Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorBudiman, Mohammad Andri
dc.contributor.authorZulfa, Syarifah Chaira
dc.date.accessioned2025-02-04T08:18:39Z
dc.date.available2025-02-04T08:18:39Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100856
dc.description.abstractCoffee is a vital trade commodity for the global economy, including Indonesia, the third-largest coffee producer in the world in 2022/2023. This research aims to develop a predictive model for coffee export transactions using historical data and customer purchase trends. Due to the limited transaction data, synthetic data generation was employed to expand the dataset. The collected coffee export data was processed through several stages and then generated using the SDV Gaussian Copula. The results showed that the accuracy of the data generation was 74.87%, and the accuracy of the prediction was 61.5%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjecttransaction predictionen_US
dc.subjectcoffee exporten_US
dc.subjectdata generationen_US
dc.titlePembangkitan Data Sintetis pada Prediksi Transaksi Ekspor Kopien_US
dc.title.alternativeSynthetic Data Generation for Predcting Coffee Export Transactionsen_US
dc.typeThesisen_US
dc.identifier.nimNIM227056007
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN0008107507
dc.identifier.kodeprodiKODEPROD49302#Sains Data dan Kecerdasan Buatan
dc.description.pages123 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 8. Decent Work And Economic Growthen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record