Show simple item record

dc.contributor.advisorSitompul, Opim Salim
dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.authorPutra, Indra Syah
dc.date.accessioned2025-02-04T08:52:28Z
dc.date.available2025-02-04T08:52:28Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100860
dc.description.abstractCustomer churn prediction is critical for businesses to reduce customer attrition and improve customer retention strategies. This research proposes a method to enhance the accuracy and effectiveness of customer churn prediction in the banking industry using confident learning and XGBoost algorithms. Confident Learning is employed to address the challenges of uncertain or mislabeled training data, while XGBoost is utilized to build an efficient prediction model. The dataset used consists of 1,000 customers from a Regional Bank. The predictive model was tested in six different scenarios, and by using the confident learning algorithm and XGBoost, a significant accuracy improvement was achieved, reaching 93.36% on the dataset used.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectcustomer churnen_US
dc.subjectconfident learningen_US
dc.subjectpredictionen_US
dc.titlePendekatan Data-Centric AI dengan Confident Learning dan XGBoost untuk Prediksi Churn Nasabahen_US
dc.title.alternativeA Data-Centric AI Approach with Confident Learning and XGBoost for Customer Churn Predictionen_US
dc.typeThesisen_US
dc.identifier.nimNIM217056001
dc.identifier.nidnNIDN0017086108
dc.identifier.nidnNIDN0026106209
dc.identifier.kodeprodiKODEPROD49302#Sains Data dan Kecerdasan Buatan
dc.description.pages61 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record