Show simple item record

dc.contributor.advisorLydia, Maya Silvi
dc.contributor.advisorFahmi
dc.contributor.authorMuttaqin, Widang
dc.date.accessioned2025-02-04T08:59:55Z
dc.date.available2025-02-04T08:59:55Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/100861
dc.description.abstractIn the current era of rapid technological development, customer churn poses a serious challenge, especially in the highly competitive telecommunications industry. Churn refers to customers who stop using a service or switch to another provider and can be categorized into three types: Active Churn, Passive Churn, and Rotational Churn. Rotational Churn, which is difficult to predict due to unclear reasons for stopping, is the primary focus of this study. This study aims to cluster Rotational Churn customers using a Data-Centric AI approach. This approach emphasizes improving data quality through Synthetic Data before applying the K-Means clustering algorithm. The data used in this study is churn data from a telecommunications company for the year 2023. The results show that clustering customers using the K-Means algorithm can provide deep insights into the characteristics of churn customers. The application of Data-Centric AI has been proven to improve the accuracy of the clustering model, ultimately helping the company to optimize programs and services to minimize churn and retain customers.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCustomer Churnen_US
dc.subjectRotational Churnen_US
dc.subjectData-Centric AIen_US
dc.subjectSynthetic Dataen_US
dc.subjectK-Means Clusteringen_US
dc.subjectData Qualityen_US
dc.titleKlasterisasi Rotational Churn terhadap Pelanggan Telekomunikasi Menggunakan Pendekatan Data-Centric AIen_US
dc.title.alternativeClustering Rotational Churn of Telecommunication Customer Using Data-Centric AI Approachen_US
dc.typeThesisen_US
dc.identifier.nimNIM217056002
dc.identifier.nidnNIDN0027017403
dc.identifier.nidnNIDN0009127608
dc.identifier.kodeprodiKODEPROD49302#Sains Data dan Kecerdasan Buatan
dc.description.pages71 Pagesen_US
dc.description.typeTesis Magisteren_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record