Show simple item record

dc.contributor.advisorHerriyance
dc.contributor.advisorHarumy, T Henny Febriana
dc.contributor.authorTonglo, Yehezkiel Ferdinand
dc.date.accessioned2025-03-07T04:20:35Z
dc.date.available2025-03-07T04:20:35Z
dc.date.issued2024
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/101880
dc.description.abstractThis study compares the performance of the XGBoost and Long Short-Term Memory (LSTM) algorithms in predicting ATM cash availability at Bank Sumut. The predictions are based on historical transaction data processed using machine learning and deep learning methods. XGBoost excels in handling tabular data with interrelated features, while LSTM demonstrates reliability in time series data. The dataset comprises three months of transactions from 20 ATMs located in different areas. The findings indicate that XGBoost achieves higher prediction accuracy than LSTM based on metrics such as RMSE, MAE, and MSE. Furthermore, the prediction implementation is integrated into a geospatial-based website using technologies like Leaflet.js, enabling real-time visualization of ATM cash availability statuses. This system is designed to support Bank Sumut's operational decision-making in efficiently managing cash distribution. The results of this study demonstrate that the XGBoost algorithm outperforms in predicting ATM cash availability, achieving smaller RMSE, MAPE, MAE, and MSE valuesen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectXGBoosten_US
dc.subjectLSTMen_US
dc.subjectCash Availability Predictionen_US
dc.subjectATMen_US
dc.subjectGeospatial Weben_US
dc.subjectMachine Learningen_US
dc.titlePerbandingan Algoritma XGBoost dan LSTM untuk Prediksi Ketersediaan Kas Atm Bank Sumut Berbasis Website Geospasialen_US
dc.title.alternativeComparison of XGBoost and LSTM Algorithm for Bank Sumut ATM Cash Availability Prediction Based Geospatial Websiteen_US
dc.typeThesisen_US
dc.identifier.nimNIM201401132
dc.identifier.nidnNIDN0024108007
dc.identifier.nidnNIDN0119028802
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages76 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record