Show simple item record

dc.contributor.advisorSihombing, Poltak
dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorFahmi
dc.contributor.authorMubarakah, Naemah
dc.date.accessioned2025-03-07T06:47:13Z
dc.date.available2025-03-07T06:47:13Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/101882
dc.description.abstractImage validation is always necessary to ensure that detected images are accurate. The higher the object image validation value, the better the object detection performance. The development of Artificial Neural Networks (ANN) has reached the stage where the concept of Deep Neural Networks (DNN) has emerged as a promising evolution of ANN. DNN is one of the algorithms in Deep Learning that can efficiently solve complex problems with large datasets. Therefore, it is essential to study the best model to be applied to DNN to achieve optimal target image validation performance. This research discusses the validation of target images by modifying the DNN algorithm. The hidden layers examined include 3, 4, 5, and 6 hidden layers. In addition to the number of hidden layers, the study also considers variations in activation functions, batch sizes, and the number of neurons. The results show that the best performance is achieved with a model using 3 hidden layers, a new activation function and Sigmoid, a batch size of 64, and the number of neurons set at 256, 128, and 64, respectively. This model is capable of achieving realtime target image validation accuracy of up to 95.46%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectDeep Neural Network,en_US
dc.subjectActivation Functionen_US
dc.subjectBatch Sizeen_US
dc.subjectNeuronsen_US
dc.subjectData Validationen_US
dc.titleModel Validasi Gambar Target Dengan Modifikasi Algoritma Deep Neural Network pada Sensor Gambaren_US
dc.title.alternativeTarget Image Validation Model Using Deep Neural Network Algorithm Modification on Image Sensoren_US
dc.typeThesisen_US
dc.identifier.nim188123008
dc.identifier.nidn0017036205
dc.identifier.nidn0010116706
dc.identifier.nidn0009127608
dc.identifier.kodeprodiKODEPRODI55001#Ilmu Komputer
dc.description.pages145 pagesen_US
dc.description.typeDisertasi Doktoren_US
dc.subject.sdgsSDGs 9. Industry Innovation And Infrastructureen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record