Show simple item record

dc.contributor.advisorRahmat, Romi Fadillah
dc.contributor.advisorArisandi, Dedy
dc.contributor.authorKhalishah, Wanda
dc.date.accessioned2025-03-18T07:00:38Z
dc.date.available2025-03-18T07:00:38Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/102234
dc.description.abstractThis research focuses on developing a sky image classification system using Convolutional Neural Network (CNN) with the NASNet architecture, renowned for its superior performance in image classification tasks. Sky images hold significant potential for identifying optimal locations for solar radiation absorption, with cloud coverage being one of the key influencing factors. In this study, the Singapore Whole Sky Imaging CATegories (SWIMCAT) dataset is utilized, comprising five categories: clear sky, pattern cloud, thick dark cloud, thick cloud, and veil. This dataset serves as the foundation for training and testing the NASNet model, enhanced with on-the-fly data augmentation techniques to boost its performance. Experimental results demonstrate that the proposed model achieves an outstanding accuracy of up to 99.37%. These findings highlight not only the reliability of NASNet architecture in image classification but also its potential for broader applications, including weather monitoring, solar energy management, and automated image processing. With its high accuracy and processing efficiency, this approach underscores its relevance in advancing AI-based technologies across diverse fields.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectSky Conditionen_US
dc.subjectClassificationen_US
dc.subjectCNNen_US
dc.subjectTransfer-learningen_US
dc.subjectNASNeten_US
dc.titleKlasifikasi Kondisi Langit menggunakan Algoritma Convolutional Neural Network dengan Arsitektur NASNeten_US
dc.title.alternativeSky Condition Classification using Convolutional Neural Network Algorithm with NASNet Architectureen_US
dc.typeThesisen_US
dc.identifier.nimNIM191402076
dc.identifier.nidnNIDN0003038601
dc.identifier.nidnNIDN0031087905
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages86 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 13. Climate Actionen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record