Show simple item record

dc.contributor.advisorNababan, Anandhini Medianty
dc.contributor.advisorZamzami, Elviawaty Muisa
dc.contributor.authorSiregar, Christento
dc.date.accessioned2025-06-19T01:44:58Z
dc.date.available2025-06-19T01:44:58Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/104436
dc.description.abstractText-based CAPTCHA is a commonly used security system to distinguish between human users and bots by displaying distorted text. This study explores the recognition of distorted text CAPTCHAs using deep learning approaches, focusing on implementing the CNN and ResNet-50 models. Through this implementation, the research demonstrates that recognition accuracy improves significantly, revealing vulnerabilities in text-based CAPTCHA systems. The implemented model achieved 96.78% accuracy on 4-character CAPTCHAs, 94.86% accuracy on 5-character CAPTCHAs, and 93.11% accuracy on 6-character CAPTCHAs. These findings highlight the importance of developing stronger and more innovative CAPTCHA systems to maintain the security of online platforms. Future studies could benefit from these results by exploring other CAPTCHA variants and more advanced deep learning techniques, as well as balancing security and user experienceen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCAPTCHAen_US
dc.subjectClassificationen_US
dc.subjectDeep Learningen_US
dc.subjectConvolutional Neural Networken_US
dc.subjectResidual Networks (ResNet50)en_US
dc.titleImplementasi Model Convolutional Neural Network (CNN) dan Resnet-50 dalam Identifikasi Captcha Teks Terdistorsien_US
dc.title.alternativeImplementation of Convolutional Neural Network (CNN) and Resnet-50 Models in The Identification of Distorted Text Captchasen_US
dc.typeThesisen_US
dc.identifier.nimNIM211401120
dc.identifier.nidnNIDN0013049304
dc.identifier.nidnNIDN0016077001
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages70 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record