Show simple item record

dc.contributor.advisorAmalia
dc.contributor.advisorGinting, Dewi Sartika Br
dc.contributor.authorSiagian, Sammytha Br
dc.date.accessioned2025-06-20T07:03:58Z
dc.date.available2025-06-20T07:03:58Z
dc.date.issued2025
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/104485
dc.description.abstractIn many cases, a single text often contains more than one emotion simultaneously, such as in movie reviews that may express both “joy” and “sadness” at once. To capture this emotional complexity, a multi-label classification approach is considered more representative, as it allows a text to be assigned to multiple emotion categories. This research aims to apply the IndoBERT model for multi-label emotion analysis on Indonesian-language text using a fine-tuning approach. The dataset was collected through web scraping on Twitter using tweet-harvest and annotated into eight basic emotion categories based on Plutchik’s theory, namely anger, anticipation, disgust, fear, joy, sadness, surprise, and trust. The outcome of retraining the fine-tuned IndoBERT model successfully achieved 93% in precision, recall, and F1-score on micro average, and 95% on samples average. The findings suggest that the model performs exceptionally well in identifying multiple emotions in a single text, making it a suitable option for natural language processing tasks that require a thorough understanding of emotions in Indonesian.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMulti-Label Classificationen_US
dc.subjectEmotion Analysisen_US
dc.subjectTransformersen_US
dc.subjectIndoBERTen_US
dc.subjectFine-Tuningen_US
dc.titleAnalisis Emosi Multi-Label pada Teks Bahasa Indonesia dengan Implementasi Fine-Tuning BERTen_US
dc.title.alternativeMulti-Label Emotion Analysis on Indonesian Text Using BERT Fine-Tuningen_US
dc.typeThesisen_US
dc.identifier.nimNIM211401019
dc.identifier.nidnNIDN0121127801
dc.identifier.nidnNIDN0104059001
dc.identifier.kodeprodiKODEPRODI55201#Ilmu Komputer
dc.description.pages60 Pagesen_US
dc.description.typeSkripsi Sarjanaen_US
dc.subject.sdgsSDGs 4. Quality Educationen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record