• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perbandingan Kinerja Metode Metropolis-Hastings dan Gibbs-Sampling dalam Penaksiran Parameter Model Regresi Logistik Multinomial

    Comparison of the Performance of the Metropolis–Hastings and Gibbs Sampling Methods in Parameter Estimation of the Multinomial Logistic Regression Model

    Thumbnail
    View/Open
    Cover (2.101Mb)
    Fulltext (4.788Mb)
    Date
    2025
    Author
    Togatorop, Sri Monica
    Advisor(s)
    Sutarman
    Metadata
    Show full item record
    Abstract
    Parameter estimation in multinomial logistic regression models often faces challenges when sample sizes are limited or when predictor variables exhibit high multicollinearity, which can reduce estimation accuracy and stability. These conditions highlight the need for a Bayesian analysis approach capable of producing reliable and stable parameter estimates while maintaining prediction quality even under nonideal data conditions. This study aims to compare the performance of two Markov Chain Monte Carlo (MCMC) methods, namely Metropolis-Hastings (MH) and Gibbs Sampling with Polya-Gamma augmentation (Gibbs-PG). MH utilizes a symmetric Gaussian proposal distribution to efficiently explore the parameter space, whereas Gibbs-PG employs Polya-Gamma augmentation to reduce autocorrelation and improve mixing. The data include the Iris Dataset (three classes, four predictors) and four simulated datasets with varying sample sizes (n = 50 and n = 500) and multicollinearity levels (ρ = 0.2 and 0.95). Performance evaluation considers estimation stability (standard error and confidence interval width), sampling efficiency (Effective Sample Size, ESS), and classification accuracy for category prediction. The results indicate that Gibbs-PG produces more stable estimates, with standard errors 30–50% lower than MH under high multicollinearity conditions. In terms of sampling efficiency, Gibbs-PG achieves ESS values between 15,000 and 16,000, substantially higher than MH (27–88), indicating lower autocorrelation and more efficient mixing. Classification accuracy reaches 96.67% for the Bayesian methods using Gibbs-PG, outperforming Maximum Likelihood Estimation (MLE), which achieves 93.33%. Overall, Gibbs-PG proves to be the most reliable method for precise and stable parameter estimation, especially for datasets with high multicollinearity or limited sample sizes, while MH remains a computationally lighter alternative.
    URI
    https://repositori.usu.ac.id/handle/123456789/110844
    Collections
    • Undergraduate Theses [1489]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV