• Login
    View Item 
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Citra TBS Kelapa Sawit Penentuan Tingkat Kematangan dengan Neural Network

    View/Open
    fulltext (2.729Mb)
    Date
    2018
    Author
    Hutasoit, Palti Marudut
    Advisor(s)
    Fahmi
    Sinulingga, Emerson P
    Metadata
    Show full item record
    Abstract
    Pada penelitian ini diterapan teknologi pengolahan citra digital pada dunia pertanian dalam pengaplikasian pengolahan citra digital untuk penentuan kematangan tandan sawit yaitu dalam menentukan atau mengklasifikasi Tandan Buah Segar (TBS) dan Tandan Buah Mentah (TBM) berbasis pengoalahan citra digital. Citra yang digunakan pada penelitian ini adalah citra Tandan Buah Segar (TBS) dan Tandan Buah Mentah (TBM) dengan tahapan preprocessing segmentasi citra background removel dengan mengatur nilai threshold saturation 0,2 - 0,7 yang akan diambil ekstrak ciri RGB-nya. Pada penelitan ini algoritma klasifikasi yang akan digunakan yaitu Jaringan Saraf Tiruan (JST) Backpropagation dan Learning Vektor Quantization (LVQ). Hasil matriks ekstrak ciri RGB dipakai sebagai input Jaringan Saraf Tiruan backpropagation dan LVQ. Dengan analisis Receiver Operating Characteristic (ROC) hasil penelitian dengan pengujian 20 TBS dan 20 TBM diperoleh tingkat precision =100%, accuracy =100%, sensitivity =100%, dan specificity=100% dengan metode klasifikasi backpropagation dengan threshold saturation 0,4 dan diperoleh hasil precision =95%, accuracy =98%, sensitivity =100%, dan specificity=95% dengan metode klasifikasi LVQ dengan threshold saturation 0,4.
     
    In this research, the technology of digital image processing in the world of agriculture to determine the maturity of palm bunches was in determining or classifying Fresh Fruit Bunches (FFB) and Raw Fruit Bunches (RFB) based on Digital Image. The image used in this research was Fresh Fruit Bunch (FFB) image and Raw Fruit Bunch (RFB) with preprocessing step of image segmentation of background of removel by adjusting the value of Threshold saturation 0,2-0,7 to be extracted RGB characteristic. In this research the classification algorithm that will be used was Neural Network (ANN) Backpropagation and LVQ. Matrix results RGB feature extract is used as a backpropagation and Learning Vektor Quantization (LVQ) Neural Network (ANN) input . With ROC analysis of the research results with 2 0 TBS and 2 0 TBM results obtained precision = 100%, accuracy = 100% , sensitivity = 100% , and specificity = 100% with the method of classification backpropagation with threshold saturation 0.4 and obtained precision result = 95 % , accuracy = 98%, sensitivity = 100%, and specificity = 95 % with the method of LVQ classification with Threshold saturation 0.4 .

    URI
    http://repositori.usu.ac.id/handle/123456789/12173
    Collections
    • Master Theses [167]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV