Show simple item record

dc.contributor.advisorFahmi
dc.contributor.advisorSinulingga, Emerson P
dc.contributor.authorHutasoit, Palti Marudut
dc.date.accessioned2019-03-06T03:07:35Z
dc.date.available2019-03-06T03:07:35Z
dc.date.issued2018
dc.identifier.urihttp://repositori.usu.ac.id/handle/123456789/12173
dc.description.abstractPada penelitian ini diterapan teknologi pengolahan citra digital pada dunia pertanian dalam pengaplikasian pengolahan citra digital untuk penentuan kematangan tandan sawit yaitu dalam menentukan atau mengklasifikasi Tandan Buah Segar (TBS) dan Tandan Buah Mentah (TBM) berbasis pengoalahan citra digital. Citra yang digunakan pada penelitian ini adalah citra Tandan Buah Segar (TBS) dan Tandan Buah Mentah (TBM) dengan tahapan preprocessing segmentasi citra background removel dengan mengatur nilai threshold saturation 0,2 - 0,7 yang akan diambil ekstrak ciri RGB-nya. Pada penelitan ini algoritma klasifikasi yang akan digunakan yaitu Jaringan Saraf Tiruan (JST) Backpropagation dan Learning Vektor Quantization (LVQ). Hasil matriks ekstrak ciri RGB dipakai sebagai input Jaringan Saraf Tiruan backpropagation dan LVQ. Dengan analisis Receiver Operating Characteristic (ROC) hasil penelitian dengan pengujian 20 TBS dan 20 TBM diperoleh tingkat precision =100%, accuracy =100%, sensitivity =100%, dan specificity=100% dengan metode klasifikasi backpropagation dengan threshold saturation 0,4 dan diperoleh hasil precision =95%, accuracy =98%, sensitivity =100%, dan specificity=95% dengan metode klasifikasi LVQ dengan threshold saturation 0,4.en_US
dc.description.abstractIn this research, the technology of digital image processing in the world of agriculture to determine the maturity of palm bunches was in determining or classifying Fresh Fruit Bunches (FFB) and Raw Fruit Bunches (RFB) based on Digital Image. The image used in this research was Fresh Fruit Bunch (FFB) image and Raw Fruit Bunch (RFB) with preprocessing step of image segmentation of background of removel by adjusting the value of Threshold saturation 0,2-0,7 to be extracted RGB characteristic. In this research the classification algorithm that will be used was Neural Network (ANN) Backpropagation and LVQ. Matrix results RGB feature extract is used as a backpropagation and Learning Vektor Quantization (LVQ) Neural Network (ANN) input . With ROC analysis of the research results with 2 0 TBS and 2 0 TBM results obtained precision = 100%, accuracy = 100% , sensitivity = 100% , and specificity = 100% with the method of classification backpropagation with threshold saturation 0.4 and obtained precision result = 95 % , accuracy = 98%, sensitivity = 100%, and specificity = 95 % with the method of LVQ classification with Threshold saturation 0.4 .en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectTandan Buah Segar (TBS)en_US
dc.subjectTandan Buah Mentah (TBM)en_US
dc.subjectEkstrak Ciri RGBen_US
dc.subjectJaringan Saraf Tiruan Backpropagationen_US
dc.subjectJaringan Saraf Tiruan LVQen_US
dc.titleAnalisis Citra TBS Kelapa Sawit Penentuan Tingkat Kematangan dengan Neural Networken_US
dc.typeThesisen_US
dc.identifier.nimNIM157034009en_US
dc.identifier.submitterNurhusnah Siregar
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record