• Login
    View Item 
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Klasifikasi Tumor Otak CT Scan dengan Zoning Menggunakan Learning Vector Quantization

    View/Open
    fulltext (2.242Mb)
    Date
    2018
    Author
    Priyulida, Fitria
    Advisor(s)
    Fahmi
    Suherman
    Metadata
    Show full item record
    Abstract
    Klasifikasi tumor otak memiliki peranan penting pada bidang aplikasi biomedik dalam hal diagnosa rekam gambar medik. Pentingnya mengidentifikasi tumor otak telah meningkat beberapa tahun belakangan ini. Hal ini dilihat dari banyaknya aplikasi yang dapat melakukan pemrosesan hasil citra medis dari peralatan medis seperti neural networks dan artificial intelligence meskipun sudah demikian berbagai inovasi dan pengembangan pada tumor otak CT Scan masih terus dilakukan dengan berbagai metode. penelitian ini membahas tentang klasifikasi tumor otak CT Scan dengan mengkombinasikan Zoning dengan Learning Vector Quantization (LVQ). Hasil matriks dari Zoning digunakan sebagai input pada metode Learning Vector Quantization (LVQ). Hasil penelitian dengan pengujian LVQ pada 10 otak normal dan 10 otak suspected memberikan tingkat keberhasilan 90% dan untuk otak normal diperoleh tingkat keberhasilan sebesar 80%.
     
    Image classification is increasingly important in medical field to diagnose recorded images. Brain tumour identification has been increasingly important area, mainly by using CT scan. Neural network and artificial intelligence methods dominate the processing algorithms; however, new methods are expected to emerge. This paper discusses brain tumour image classification by zoning combination using learning vector quantization (LVQ). The matrix results of the zoning are used as the LVQ inputs. As results from the assessment of the twenty normal and abnormal brain images, identification has been successfully carried out by 80% and 90% subsequently for suspected and normal brain.

    URI
    http://repositori.usu.ac.id/handle/123456789/12177
    Collections
    • Master Theses [167]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV