• Login
    View Item 
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Engineering
    • Department of Electrical Engineering
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Implementasi Learning Vector Quantification dan K-Nearest Neighbor untuk Aplikasi Pemilahan Buah

    View/Open
    Fulltext (1.644Mb)
    Date
    2017
    Author
    Sagala, Romulo Sugianto
    Advisor(s)
    Fahmi
    Metadata
    Show full item record
    Abstract
    Proses pengenalan citra dimulai dengan image acquisition dan image pre-processing, proses berikutnya adalah mendapatkan ekstraksi ciri. Pada penelitian ini ekstraksi ciri yang digunakan adalah ciri warna HSI dan ciri tekstur orde dua buah jeruk keprok. Tahap berikutnya adalah melakukan klasifikasi dengan metode klasifikasi LVQ dan K-NN. Metode klasifikasi LVQ dan K-NN menghasilkan laju akurasi 95 %, optimalisasi laju akurasi dapat dilakukan selain dengan metode klasifikasi yang tepat juga dengan pemilihan ekstraksi ciri yang sesuai. Penggunaan analisis ROC pada penelitian ini dilakukan untuk mendapatkan komparasi parameter hasil klasifikasi pada metode LVQ dan K-NN secara lengkap, pada aplikasi pemilahan buah.
     
    Image Recognition process get started by image acquisition and image pre-processing, the next step is to get feature extraction. This research used HSI colour features and second order features for texture extraction of keprok orange fruit. After this stage is done, the classification with LVQ method and K-NN method is ordered. LVQ method and K-NN method for all fruit tester result 95 % of rate accuracy. Rate accuracy optimise could be done by appropriate classification method else with picked out the right feature extraction. The used ROC analysis in the research is to obtain comprehensive LVQ and K-NN method comparative for fruit sorting application.

    URI
    http://repositori.usu.ac.id/handle/123456789/20745
    Collections
    • Master Theses [167]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV