• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifikasi Penyakit Kulit Menggunakan Extreme Learning Machine

    View/Open
    fulltext (4.025Mb)
    Date
    2017
    Author
    Sirait, Tommy Roy
    Advisor(s)
    Amalia
    Rahmat, Romi Fadillah
    Metadata
    Show full item record
    Abstract
    Skin disease is the most common and fastest disease that infects the human body. It because the skin is the first organ to receive stimuli from the outside either in the form of touch, temperature and other stimuli. Skin disease consists of several types that have a texture color that almost look same by naked eye. Thus an approach is required to recognize the type of skin disease with the image processing systems, and artificial neural networks. The identification method used in this research is Extreme Learning Machine. Infected skin image is used as the input image for image processing. Prior to the identification, should to do pra-processing like image resizing, grayscalling, extraction of image characteristics using Gray Level Co-occurrence Matrix (GLCM). The testing process in this study used 103 images of skin disease for training data and 30 images of skin diseases for test data that resulted in the ability to identify the types of skin disease with accuracy amount 96.6%.
     
    Penyakit kulit merupakan penyakit yang paling umum dan paling cepat menginfeksi tubuh manusia. Hal tersebut terjadi karena kulit merupakan organ pertama yang menerima rangsangan dari luar baik berupa sentuhan, suhu dan rangsangan lainnya. Penyakit kulit terdiri dari beberapa jenis yang memiliki warna tekstur yang hampir sama secara kasat mata. Dengan demikian diperlukan suatu pendekatan untuk mengenali jenis penyakit kulit dengan bantuan sistem image prosessing, dan jaringan saraf tiruan. Metode identifikasi yang digunakan dalam penelitian ini adalah Extreme Learning Machine. Citra kulit yang terinfeksi digunakan sebagai citra masukan untuk proses pengolahan citra. Sebelum diidentifikasi dilakukan prapengolahan citra yaitu resizing, grayscalling, ektraksi ciri citra menggunakan metode Gray Level Co-occurrence Matrix (GLCM). Proses pengujian pada penelitian ini menggunakan 30 jenis citra penyakit kulit dan menghasilkan kemampuan mengidentifikasi jenis penyakit penyakit kulit dengan akurasi sebesar 96,6%.

    URI
    http://repositori.usu.ac.id/handle/123456789/2407
    Collections
    • Undergraduate Theses [767]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV