• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Sentimen pada Acara Televisi Menggunakan Improved K-Nearest Neighbor

    View/Open
    fulltext (3.188Mb)
    Date
    2017
    Author
    Oktinas, Willa
    Advisor(s)
    Amalia
    Rahmat, Romi Fadillah
    Metadata
    Show full item record
    Abstract
    Public sentiment can be used as one of the indicator by tv stations to determine the quality of their tv programme. On twitter, information extraction of this public sentiment can be done to determine their tv programme’s quality too. One of the method to do the information extraction on twitter is by using sentiment analysis method. In this research, sentiment analysis method is applied and it consists of 3 stages. The first stage is pre-processing which consists of cleansing, case folding, tokenizing, stopword removal, stemming, and redundancy filtering. The second stage is weighting process for every single word by using TF-IDF method. Then, the last stage is the sentiment classification process which is divided into 3 sentiment category specifically positive, negative and neutral, this process is done using the improved k-nearest neighbor method. The result obtained from this research generated the highest accuracy with k=10 as big as 90%.
     
    Sentimen masyarakat dapat dijadikan sebagai salah satu indikator oleh stasiun televisi untuk menentukan kualitas suatu acara. Pada twitter dapat dilakukan proses penggalian informasi mengenai sentimen masyarakat terhadap kualitas acara yang ditayangkan. Salah satu teknik penggalian informasi pada twitter adalah analisis sentimen. Pada penelitian ini terdiri dari 3 tahapan proses analisis sentimen. Tahap pertama yaitu proses pre-pocessing yang terdiri dari cleansing, case folding, tokenizing, stopword removal, stemming, dan filter redudansi. Selanjutnya pada tahap kedua yaitu proses perhitungan bobot pada setiap kata menggunakan metode TF-IDF. Tahap terakhir yaitu proses klasifikasi sentimen menjadi 3 kategori yaitu sentimen positif, negatif, dan netral menggunakan metode improved k-nearest neighbor. Hasil yang diperoleh dari pengujian analisis sentimen berbahasa Indonesia dengan metode Improved K-Nearest Neighbor menghasilkan akurasi tertinggi dengan nilai k=10 sebesar 90%.

    URI
    http://repositori.usu.ac.id/handle/123456789/2416
    Collections
    • Undergraduate Theses [767]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV