Pembobotan Fitur Dataset Menggunakan Gain Ratio Guna Meningkatkan Akurasi Metode Naïve Bayesian Classifier
View/ Open
Date
2020Author
Siagian, Novriadi Antonius
Advisor(s)
Sutarman
Sawaluddin
Metadata
Show full item recordAbstract
Metode Naïve bayes masih memiliki tingkat kelemahan ketika melakukan seleksi atribut, karena Naïve bayes sendiri adalah suatu metode pengklasifikasian statistik yang hanya berdasarkan pada teorema Bayes sehingga hanya bisa dipakai dengan tujuan untuk memprediksi probabilitas keanggotaan pada suatu grup atau kelas. Oleh karena itu dibutuhkan pembobotan atribut supaya bisa meningkatkan akurasi lebih efektif. Sehingga berdasarkan pembobotan Gain ratio disebut dengan Weight Naïve bayesian classifier (WNB), mampu memberikan akurasi yang lebih baik dari pada Naïve bayesian classifier konvensional. Dimana peningkatan dalam nilai akurasi tertinggi yang diperoleh dari dataset Kualitas Air sama dengan 88,57% dalam model klasifikasi Weight Naïve bayesian classifier, sedangkan nilai akurasi terendah diperoleh dari dataset Haberman yang 78,95% dalam model klasifikasi Naïve bayesian classifier konvensional. Peningkatan akurasi model klasifikasi Weight Naïve bayesian classifier dalam dataset Kualitas Air adalah 2,9%. Sementara peningkatan nilai akurasi dalam dataset Haberman adalah 1,8%. Berdasarkan pengujian yang telah dilakukan pada semua data pengujian, dapat dikatakan bahwa model klasifikasi Weight Naïve bayesian classifier dapat memberikan nilai akurasi yang lebih baik daripada yang dihasilkan oleh model klasifikasi Naïve bayesian classifier konvensional. Naïve bayes method have still has weakness level when do the attribute selection, because its Naïve bayes is the method of statistic classification that only based on the Bayes theorem so it only can be used with the purpose to predict the probability of membership in a class or group. It may be needed the weighting of attribute to be able to increase the accuracy that more effective. So, based on the weighting of Gain ratio that is called with Weight Naïve bayesian classifier (WNB), able to give the accuracy that batter than Naïve bayesian classifier konvensional. Where is the increasing of high score accuracy that is gotten from data set of water quality is 88,57% in Weight Naïve bayesian classifier classification model, than the lower score of accuracy is gotten from Haberman data set, that is 78,95% from Naïve bayesian classifier konvensional classification model. The increasing of accuracy Weight Naïve bayesian classifier classification model in water quality data set is 2,9%. While, the increasing of accuracy score in Haberman data set is 1,8%. Based on the testing that has been done to all the testing data, it can be said that the Weight Naïve bayesian classifier classification model can give the better accuracy score than produced by Naïve bayesian classifier classification model.
Collections
- Master Theses [622]