• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis K-Nearest Neighbor dengan K-Fold Cross Validation dan Analytic Hierarchy Process pada Klasifikasi Data

    View/Open
    Fulltext (3.654Mb)
    Date
    2021
    Author
    Tembusai, Zoelkarnain Rinanda
    Advisor(s)
    Mawengkang, Herman
    Zarlis, Muhammad
    Metadata
    Show full item record
    Abstract
    This study analyzes the performance of the k-Nearest Neighbor method with the k-Fold Cross Validation algorithm as an evaluation model and the Analytic Hierarchy Process method as feature selection for the data classification process in order to obtain the best level of accuracy and machine learning model. The best test results are in fold-3, which is getting an accuracy rate of 95%. Evaluation of the k-Nearest Neighbor model with k-Fold Cross Validation can get a good machine learning model and the Analytic Hierarchy Process as a feature selection also gets optimal results and can reduce the performance of the k-Nearest Neighbor method because it only uses features that have been selected based on the level of importance for decision making
     
    Penelitian ini menganalisis kinerja metode k-Nearest Neighbor dengan algoritma k-Fold Cross Validation sebagai evaluasi model dan metode Analytic Hierarchy Process sebagai seleksi fitur untuk proses klasifikasi data agar memperoleh tingkat akurasi dan model machine learning yang terbaik. Hasil pengujian terbaik ada pada fold-3 yaitu memperoleh tingkat akurasi 95%. Evaluasi model k-Nearest Neighbor dengan k-Fold Cross Validation dapat memperoleh model machine learning yang baik serta Analytic Hierarchy Process sebagai seleksi fitur juga mendapatkan hasil yang optimal serta dapat meringankan kinerja metode k-Nearest Neighbor karena hanya menggunakan fitur yang telah diseleksi berdasarkan tingkat kepentingan untuk pengambilan keputusan.

    URI
    http://repositori.usu.ac.id/handle/123456789/32713
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV