• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pengenalan Pola dalam Fuzzy Clustering dengan Pendekatan Algoritma Genetika

    View/Open
    Fulltext (909.0Kb)
    Date
    2011
    Author
    Sebayang, Ayu Nuriana
    Advisor(s)
    Effendi, Syahril
    Tulus
    Metadata
    Show full item record
    Abstract
    The classification of data by pattern in a cluster to determine the cluster center based on the equality level measured by distance function. By using genetic operator mechanism, i.e. crossing and population mutation in evolution through the fitness function that directed to the convergence condition. This algorithm can be applied in any optimization function area, its application is fuzzy clustering based objective function. The writer using the Fuzzy C-Means, i.e. clustering algorithm for IPM clustering (Human Development Index) in each Province in Indonesia by classified the provinces into any clusters. In the genetic algorithm approach in solving the fuzzy clustering is conducted by alternative for using the Prototype based algorithm approach, i.e. evolution of cluster center matrix by determining the fitness function ∑∑= = = − c i n k ikik ki vD 1 1 2 Jm(U, )V µ )x( .
     
    Masalah mengelompokkan data dengan suatu pola dalam cluster untuk menentukan pusat cluster berdasarkan derajat kesamaan yang diukur dari fungsi jarak. Dengan menggunakan mekanisme operator genetik yaitu persilangan dan mutasi populasi dievolusikan melalui fungsi fitness yang diarahkan pada kondisi konvergensi. Algoritma ini dapat diterapkan dalam banyak area fungsi-fungsi optimasi, penerapannya adalah fungsi objektif berbasis fuzzy clustering. Penulis menggunakan Fuzzy C-Means yaitu algoritma pengklusteran untuk mengkluster IPM (Indeks Pembangunan Manusia) dari setiap Propinsi di Indonesia dengan membagi Propinsi dalam beberapa cluster. Pada pendekatan algoritma genetika untuk penyelesaian fuzzy clustering ditempuh pilihan untuk menggunakan pendekatan Prototype-based algorithms, yaitu mengevolusikan matrik pusat cluster dengan menentukan fungsi fitness ∑∑= = = − c i n k ikik ki vD 1 1 2 Jm(U, )V µ )x( .

    URI
    http://repositori.usu.ac.id/handle/123456789/36842
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV