Show simple item record

dc.contributor.advisorBaafai, Usman
dc.contributor.advisorBenny B.Nst
dc.contributor.authorHerdianto
dc.date.accessioned2021-07-29T08:52:21Z
dc.date.available2021-07-29T08:52:21Z
dc.date.issued2013
dc.identifier.urihttp://repositori.usu.ac.id/handle/123456789/38400
dc.description.abstractInduction motor (IM) is electric equipment which changes electric energy to mechanical energy as a revolving power. It is frequently used as a drive for doing many processes in industry. Even though it is reliable, it can be totally broken when it is operating. The total damage of induction motor, while it is supporting the process of production, can cause the low quality of the product until the process of the production stops. To avoid the induction motor being totally damaged, the method of artificial nerve grid with back-propagation algorithm was used in this research to predict the damage which will occur in induction motor, especially in the stator for the following day. In order to be used to predict the damage in the induction motor, especially in the stator with the accuracy above 85%, the artificial nerve grid must have optimal grid structure. Therefore, this research was emphasized on the searching for the optimal structure of artificial nerve grid, based on the pattern of training data, such as searching for the amount of time delay, hidden layer, node hidden layer, constant value of learning rate, and momentum. From the result of test, it was found that the artificial nerve grid was able to predict the damage in the induction motor, especially in the stator for the following day with 90% of the level of accuracy.en_US
dc.description.abstractMotor induksi (MI) adalah alat listrik yang mengubah energi listrik menjadi energi mekanik berupa tenaga putar. Motor induksi banyak dipakai sebagai penggerak untuk mengerjakan banyak proses di industri. Meskipun MI cukup handal tetapi dapat saja mengalami kerusakan total pada saat beroperasi. Kerusakan total pada motor induksi pada saat mendukung proses produksi dapat menyebabkan rendahnya mutu barang jadi yang dihasilkan sampai berhentinya proses produksi itu sendiri. Untuk menghindari kerusakan total pada motor induksi, pada penelitian ini digunakan metode jaringan saraf tiruan dengan algoritma backpropagation untuk memprediksi kerusakan yang akan terjadi pada motor induksi khususnya pada stator untuk 1 hari ke depan. Agar dapat digunakan untuk memprediksi kerusakan motor induksi khususnya pada stator dengan tingkat akurasi di atas 85% jaringan saraf tiruan harus memiliki struktur jaringan yang optimal. Maka pada penelitian yang telah dilakukan penelitian dititik beratkan pada pencarian struktur jaringan saraf tiruan yang optimal berdasarkan pola data pelatihan seperti mencari jumlah time delay, hidden layer, node hidden layer, nilai konstanta learning rate dan momentum. Dari hasil pengujian yang telah dilakukan bahwasanya jaringan saraf tiruan mampu memprediksi kerusakan motor induksi khususnya pada stator untuk satu hari ke depan dengan tingkat akurasi mencapai 90%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMotor induksien_US
dc.subjectjaringan saraf tiruanen_US
dc.subjectstruktur jaringan optimalen_US
dc.subjectmemprediksien_US
dc.titlePrediksi Kerusakan Motor Induksi Menggunakan Metode Jaringan Saraf Tiruan Backpropagationen_US
dc.typeThesisen_US
dc.identifier.nimNIM097034029
dc.description.pages184 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record