• Login
    View Item 
    •   USU-IR Home
    • Faculty of Medicine
    • Department of Internal Medicine
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Medicine
    • Department of Internal Medicine
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Akurasi Duke Model Score sebagai Prediktor Infeksi Extended-Spectrum Beta Lactamase (ESBL) pada Pasien Rawat Inap

    View/Open
    Fulltext (2.049Mb)
    Date
    2015
    Author
    Ginting, Jhon Effraim
    Advisor(s)
    Ginting, Yosia
    Ginting, Fransciscus
    Metadata
    Show full item record
    Abstract
    In the last two decades, intensive use of broad spectrum antibiotics has led to the emerge of antibiotics-resistant strains of Enterobacteriaceae that produce Extended-Spectrum β-Lactamases (ESBLs). The mortality rate in ‘susceptibility/treatment mismatched patients’ has ranged from 42-100%. To begin initial appropriate antibiotic therapy in a timely manner, a predictor will be needed. One of the latest scoring system to predict ESBL infection is Duke Model Score. This study aims to assess the accuracy of the Duke Model Score as a predictor of ESBL infection. Cross-sectional study was conducted from January - August 2014 in RSUP H Adam Malik Medan, in patients with infections. Italian Score was calculated and bacterial cultures were taken from the source of infection. By using a cut off point of ≥8, Duke Model Score sensitivity of 91.3% was obtained, specificity was 82.6%, positive predictive value was 84% and negative predictive value was 90.5%. From the analysis using ROC curves, the Duke Model Score accuracy was 93.1% (95% CI: 88.1 to 98.1%, p = 0.0001). Antibiotics that can be used against ESBL infections only amikacin, imipenem, ertapenem, meropenem and tigeciclin. Conclusion: Duke Model Score can be used as predictors of the presence of ESBL infection.
     
    Penggunaan antibiotik spektrum luas yang intensif dalam dua dekade terakhir mengakibatkan munculnya strain bakteri Enterobacteriaceae yang resisten terhadap antibiotik, dengan menghasilkan enzim-enzim Extended Spectrum β Lactamase (ESBL). Angka kematian akibat infeksi bakteri ESBL, apabila tidak diobati dengan antibiotik yang tidak tepat, berkisar antara 42%-100%. Untuk memulai terapi dengan cepat, diperlukan suatu prediktor adanya infeksi. Suatu prediktor dengan sistem scoring paling mutakhir adalah Duke Model Score. Penelitian ini bertujuan untuk menilai akurasi Duke Model Score sebagai prediktor infeksi ESBL. Penelitian cross sectional dilakukan mulai Januari 2014 - Agustus 2014 di RSUP H Adam Malik Medan pada pasien infeksi. Dihitung Duke Model Score dan dilakukan kultur bakteri dari sumber infeksinya. Dengan menggunakan cut off skor ≥8 didapatkan sensitivitas Duke Model Score 91,3%, spesifisitas 82,6%, nilai prediksi positif 84% dan nilai prediksi negatif 90,5%. Dari hasil analisis menggunakan kurva ROC diperoleh akurasi Duke Model Score adalah 93,1% (95%CI : 88,1% - 98,1%; p=0,0001). Antibiotik yang dapat digunakan untuk melawan infeksi ESBL hanyalah amikasin, imipenem, ertapenem, meropenem dan tigecicline. Kesimpulan: Duke Model Score dapat digunakan sebagai prediktor adanya infeksi ESBL.

    URI
    http://repositori.usu.ac.id/handle/123456789/38455
    Collections
    • Master Theses [399]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV