• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Penggunaan Metode Support Vector Machine (SVM) untuk Mengklasifikasi dan Memprediksi Angkutan Udara Jenis Penerbangan Domestik dan Penerbangan Internasional di Banda Aceh

    View/Open
    Fulltext (1.091Mb)
    Date
    2011
    Author
    Fachrurrazi, Sayed
    Advisor(s)
    Situmorang, Zakarias
    Mawengkang, Herman
    Metadata
    Show full item record
    Abstract
    This Paper present the analysis of the performance implementing of support vector machine with 11 independent variable and 1 dependent variable. The SVM method with training data (75%) and testing data (25%) able used for classification data domestic flight and internasional flight can be find the best hyperplane rule for 2 classifier. The output for 4 support vector could to find a function to differentiate data classes. which used Structure Risk Minimization (SRM) to find the best hyperplane function to separate two data classes. This research analyzes SVM performance for there aeroplane classifying based on domestic and international rute Some precautions have to be performed in onder to get a good performance i.e preprocessing, kernel application, the appropriate parameter in SVM and feature selection. The study shows that SVM method can be applied to classify IBM. The model accuracy is 84,31% observed using Receiver Operating Characteristic (ROC).
     
    Tulisan ini menyajikan analisis performansi Support Vector Machine (SVM) dengan 11 variabel bebas dan 1 variabel terikat. Metode SVM dengan data training (75%) dan data testing (25%) yang digunakan pada pengklasifikasian data penerbangan domestik dan data penerbangan internasional untuk menemukan hyperplane terbaik yang memisahkan dua buah kelas. Hasilnya terdapat 4 support vector memberikan informasi yang dibutuhkan untuk menyakinkan bahwa metode SVM bisa sebagai classifier dan dapat memprediksi keakuratan model dengan menggunakan kurva Receiver Operating Characteristic (ROC) untuk melihat akurasi model terbaik. mencapai 84,31%.

    URI
    http://repositori.usu.ac.id/handle/123456789/39194
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV