• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Algoritma C4.5 dan Fuzzy Sugeno untuk Optimasi Rule Base Fuzzy

    View/Open
    Fulltext (6.125Mb)
    Date
    2017
    Author
    Ilhadi, Veri
    Advisor(s)
    Mawengkang, Herman
    Sutarman
    Metadata
    Show full item record
    Abstract
    Fuzzy logic can handle problems inability mathematic conventional for nonlinear system model. Fuzzy Sugeno is one of method which frequently used in fuzzy logic. The using of Sugeno method can solve problem in nonlinear system. The shortcoming of fuzzy logic is the increasing of load computing exponentially along with the increasing of variable value and rules in fuzzy logic. Some solution have been investigated by researchers before for decreasing of load computing by decrease a number of rule fuzzy logic. Decreasing a number of rule will impact the lack fuzzy accuracy level. In this research, researcher use C4.5 algorithm as fuzzy rule optimation. Initial rule has 288 rules but after has classified by using C4.5 algorithm, it is converted into 52 rule. After applied in data, accordingly level accuracy convert into 96.97%.
     
    Logika fuzzy dapat mengatasi ketidakmampuan matematika konvensional untuk model sistem nonlinear. Fuzzy Sugeno merupakan salah satu metode yang sering digunakan dalam logika fuzzy. Penggunaan metode Sugeno dapat mengatasi masalah sistem nonlinear. Kelemahan dari logika fuzzy adalah meningkatnya beban komputasi yang bertambah secara eksponensial seiring dengan bertambahnya jumlah variabel dan jumlah aturan dalam logika fuzzy. Beberapa cara telah dilakukan oleh para peneliti sebelumnya untuk mengurangi beban komputasi, diantaranya dengan mengurangi sejumlah aturan dalam logika fuzzy. Mengurangi sejumlah aturan akan berdampak pada tingkat akurasi fuzzy yang berkurang. Pada penelitian ini, peneliti menggunakan algoritma C4.5 sebagai optimasi rule fuzzy. Aturan awal sejumlah 288 aturan, namun setelah diklasifikasikan menggunakan algoritma C4.5 maka aturan fuzzy menjadi lebih sedikit yaitu sebanyak 52 aturan. Setelah diterapkan didalam data, maka didapat tingkat akurasi menjadi 96,97 %

    URI
    http://repositori.usu.ac.id/handle/123456789/40254
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV