• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Distribusi Markov-Binomial Negatif

    View/Open
    Fulltext (1.004Mb)
    Date
    2012
    Author
    Widyasari, Rina
    Advisor(s)
    Sutarman
    Mawengkang, Herman
    Metadata
    Show full item record
    Abstract
    The way to find a new distribution of random variables is defining the distribution which associated with Markov chain. In this research, researcher defines all the random variables identically independent distributed negative binomial distribution and form a Markov chain. Suppose that Xn is a sequence of Bernoulli trials that if 1 occurs means ”success” and 0 occurs means ”failure”. Nb(s) defined as random variables sth success in n trials. Each trial form a Markov chain, in note that if we consider that Nb(k) are total geometrically even, then if success occurs, then Markov chain must be counted from the beginner. But, if we look Xn as a sequence in {0, 1} combination, then we must look beginner state condition 0 or 1, also consider (n−1)th and nth state in 0 or 1. Therefore, researcher try to model pmf and varians of a random variables iid negative binomial associated with Markov chain then called it by Negative Binomial Distribution for Markov Process with two conditions and mode a control diagram as its application in quality control.
     
    Salah satu cara untuk memperoleh suatu distribusi peubah acak adalah dengan mendefinisikan distribusi peubah acak dengan kejadian acak yang membentuk rantai Markov. Penelitian tesis ini melakukan pengulasan kejadian-kejadian ber-distribusi binomial negatif dan membentuk suatu rantai Markov. Andaikan Xn adalah barisan percobaan {0,1} yaitu percobaan kombinasi sukses atau gagal, dan Sn menghitung jumlah sukses, maka kejadian pada percobaan ke-n selanjutnya didefinisikan seba- gai percobaan yang membentuk rantai Markov berdistribusi binomial. Jika suatu peubah acak Nb(s) menyatakan nilai ketetapan muncul sukses ke-s pada percobaan ke-n dan merupakan penjumlahan kejadian berdistribusi geometri maka apabila sukses muncul perhitungan rantai Markov akan berulang kembali. Namun, kare- na barisan membentuk rantai Markov, tetap mempertimbangkan state awal, state ke-n − 1, dan state ke-n apakah muncul 0 atau 1. Tujuan penelitian ini adalah me- modelkan fungsi massa peluang (fmp), fungsi ekspektasi dan fungsi varians peubah acak Nb(s) berdistribusi Markov-binomial negatif. Selain itu, peneliti juga memo- delkan diagram kontrol dalam quality control sebagai salah satu terapan distribusi Markov-binomial negatif.

    URI
    http://repositori.usu.ac.id/handle/123456789/42097
    Collections
    • Master Theses [423]

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara - 2025

    Universitas Sumatera Utara

    Perpustakaan

    Resource Guide

    Katalog Perpustakaan

    Journal Elektronik Berlangganan

    Buku Elektronik Berlangganan

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV