Show simple item record

dc.contributor.advisorSuwilo, Saib
dc.contributor.advisorMardiningsih
dc.contributor.authorBr Sembiring, Metrilitna
dc.date.accessioned2021-09-10T05:59:38Z
dc.date.available2021-09-10T05:59:38Z
dc.date.issued2014
dc.identifier.urihttp://repositori.usu.ac.id/handle/123456789/42945
dc.description.abstractThis paper is a descriptive-qualitative research methods literature (library research) research that examines the literature, especially on digraph Cayley for the purpose of collecting data and information with the help of a variety of materials such as books and documents. In this paper will be discuss about The study of Hamilton paths in Cayley digraphs has had a long history. We construct an infinite fa- mily Cay(Gi; ai; bi) of connected, 2−generated Cayley digraphs that do not have Hamiltonian paths, such that the orders of the generators ai and bi are unbounded. We also prove that if G is any finite group with | [G,G] | 3, then every connected Cayley digraph on G has a hamiltonian path.en_US
dc.description.abstractTesis ini merupakan penelitian deskriptif-kualitatif dengan menggunakan metode penelitian kepustakaan (library research) yaitu penelitian yang mengkaji secara kepustakaan, khususnya tentang digraph Cayley. Dalam tesis ini mengkaji ten- tang lintasan Hamilton di digraph Cayley. Dibangun sebuah keluarga yang tak terbatas Cay(Gi; ai; bi) terhubung, 2−generated digraph Cayley yang tidak memi- liki path Hamilton, seperti bahwa perintah generator ai dan bi yang tak terbatas. Dibuktikan bahwa jika G adalah kelompok terbatas dengan | [G,G] | 3, maka setiap digraph Cayley yang terhubung pada G memiliki path Hamilton.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectDigraph,en_US
dc.subjectDigraph Cayley,en_US
dc.subjectpath Hamilton.en_US
dc.titlePath Hamilton pada Digraph Cayleyen_US
dc.typeThesisen_US
dc.identifier.nimNIM127021024
dc.description.pages42 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record