dc.contributor.advisor | Suwilo, Saib | |
dc.contributor.advisor | Mardiningsih | |
dc.contributor.author | Br Sembiring, Metrilitna | |
dc.date.accessioned | 2021-09-10T05:59:38Z | |
dc.date.available | 2021-09-10T05:59:38Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://repositori.usu.ac.id/handle/123456789/42945 | |
dc.description.abstract | This paper is a descriptive-qualitative research methods literature (library research)
research that examines the literature, especially on digraph Cayley for the purpose
of collecting data and information with the help of a variety of materials such as
books and documents. In this paper will be discuss about The study of Hamilton
paths in Cayley digraphs has had a long history. We construct an infinite fa-
mily Cay(Gi; ai; bi) of connected, 2−generated Cayley digraphs that do not have
Hamiltonian paths, such that the orders of the generators ai and bi are unbounded.
We also prove that if G is any finite group with | [G,G] | 3, then every connected
Cayley digraph on G has a hamiltonian path. | en_US |
dc.description.abstract | Tesis ini merupakan penelitian deskriptif-kualitatif dengan menggunakan metode
penelitian kepustakaan (library research) yaitu penelitian yang mengkaji secara
kepustakaan, khususnya tentang digraph Cayley. Dalam tesis ini mengkaji ten-
tang lintasan Hamilton di digraph Cayley. Dibangun sebuah keluarga yang tak
terbatas Cay(Gi; ai; bi) terhubung, 2−generated digraph Cayley yang tidak memi-
liki path Hamilton, seperti bahwa perintah generator ai dan bi yang tak terbatas.
Dibuktikan bahwa jika G adalah kelompok terbatas dengan | [G,G] | 3, maka
setiap digraph Cayley yang terhubung pada G memiliki path Hamilton. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Digraph, | en_US |
dc.subject | Digraph Cayley, | en_US |
dc.subject | path Hamilton. | en_US |
dc.title | Path Hamilton pada Digraph Cayley | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM127021024 | |
dc.description.pages | 42 Halaman | en_US |
dc.description.type | Tesis Magister | en_US |