• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Perbandingan Algoritma Support Vector Clustering (Svc) dan K-Medoids pada Klaster Dokumen

    View/Open
    Fulltext (2.063Mb)
    Date
    2013
    Author
    Suhada
    Advisor(s)
    Zarlis, Muhammad
    Ramli, Marwan
    Metadata
    Show full item record
    Abstract
    Data with such a large number of potentially result in errors in the presentation of information. Data processing documents also become an important issue at this time. Along with the increasing amount of data collected and stored in a database increases drastically. This data can come from a variety of sources such as financial applications, Enterprise Resource Management (ERM), Customer Relationship Management (CRM), and others. These data if if can be used to support the decision-making process. This study focused on the issue of application of data mining methods in the case of data classification (clustering). With the presence of a considerable amount of data possible role of data mining methods in the process of segmentation via clustering that can classify the data into groups (clusters) are desired. The data mining method used Support Vector Clustering (SVC) and K-Medoids algorithm. Her test is done with the software RapidMiner. The result obtained for 11:21 Minutes SVC ranges and K-Medoids range 3:21 Minutes.
     
    Data dengan jumlah yang begitu besar berpotensi menghasilkan kesalahan dalam penyajian informasi. Pengolahan data dokumen juga menjadi isu penting pada saat ini. Seiring dengan meningkatkan jumlah data yang dikumpulkan dan disimpan dalam suatu database meningkat secara drastis. Data ini dapat berasal dari berbagai macam sumber seperti aplikasi financial, Enterprise Resource Management (ERM), Customer Relationship Management (CRM), dan lain-lain. Data-data tersebut jika di olah dapat digunakan untuk menunjang proses pengambilan keputusan. Penelitian ini difokuskan kepada isu aplikasi metode data mining pada kasus pengelompokkan data (Clustering). Dengan terdapatnya jumlah data yang cukup besar memungkinkan peranan metode data mining dalam hal proses segmentasi melalui klastering yang dapat mengelompokkan data ke dalam beberapa kelompok (Klaster) yang diinginkan. Adapun metode data mining yang digunakan Support Vector Clustering (SVC) dan algoritma K-Medoids. Pengujian nya dilakukan dengan software Rapidminer. Hasilnya didapat untuk SVC berkisar 11:21 Menit dan K-Medoids berkisar 3:21 Menit.

    URI
    http://repositori.usu.ac.id/handle/123456789/43329
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV