• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Akurasi Algoritma Pohon Keputusan dan K-Nearest Neighbor (K-Nn)

    View/Open
    Fulltext (3.397Mb)
    Date
    2013
    Author
    Huliman
    Advisor(s)
    Mawengkang, Herman
    Nababan, Erna Budhiarti
    Metadata
    Show full item record
    Abstract
    The development of modern database technology has enabled large space of storage and this concept has become the background of the data mining applications. One of the main functions of data mining is the classification that is used to predict the class and generate information based on historical data. In the classification, there is a lot of algorithms that can be used to process the input into the desired output, thus it is very important to observe and measure the performance of each algorithm. The purpose of this research is to analyze and compare the performance of decision tree (C4.5) and k- Nearest Neighbor (k-NN) algorithm from the point of view of accuracy. Data sets are derived from UCI data sets, namely BreastCancer, Car, Diabetes, Ionosphere, and Iris. The evaluation method used in both kinds of algorithms is 10-fold cross validation. Evaluation result for each algorithm is a confusion matrix for measuring the precision, recall, F-measure, and success rate. Comparative analysis of the accuracy showed that the accuracy of the decision tree algorithm is better by variation of 2.28% - 2.5% compared to k-NN algorithm in the implementation for 5 research data sets.
     
    Perkembangan teknologi basis data modern telah memungkinkan ruang penyimpanan yang besar dan hal ini menjadi latar belakang dikembangkannya konsep data mining. Salah satu fungsi utama data mining adalah fungsi klasifikasi yang digunakan untuk memprediksi kelas dan menghasilkan informasi berdasarkan data historis. Pada fungsi klasifikasi, terdapat banyak algoritma yang dapat digunakan untuk mengolah input menjadi output yang diinginkan, sehingga harus diperhatikan aspek performance dari masing-masing algoritma tersebut. Tujuan penelitian ini adalah untuk menganalisis dan membandingkan performance algoritma klasifikasi pohon keputusan (C4.5) dan k-Nearest Neighbor (k-NN) dari sudut pandang akurasi. Data sets penelitian berasal dari UCI data sets, yaitu BreastCancer, Car, Diabetes, Ionosphere, dan Iris. Adapun metode evaluasi yang digunakan pada kedua macam algoritma adalah 10-fold cross validation. Hasil evaluasi berupa confusion matrix untuk penilaian precision, recall, F-measure, dan success rate. Hasil analisis perbandingan akurasi menunjukkan bahwa nilai keakuratan algoritma pohon keputusan lebih baik dengan variasi 2.28% - 2.5% dibandingkan algoritma k-NN pada implementasi terhadap 5 data sets penelitian.

    URI
    http://repositori.usu.ac.id/handle/123456789/43496
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV