Analisis Penambahan Nilai Momentum pada Prediksi Produktivitas Kelapa Sawit Menggunakan Backpropagation Neural Network
View/ Open
Date
2016Author
Irawan, Eka
Advisor(s)
Zarlis, Muhammad
Nababan, Erna Budhiarti
Metadata
Show full item recordAbstract
Backpropagation algorithm is a multi- layer perceptron that is widely used to solve problems that are spacious, but also have limitations backpropagation algorithm is fairly slow convergence rate . In this study, the authors add in an adaptive learning rate parameter at each iteration and momentum coefficient to calculate the weight of the change process . From the results of the computer simulations for the comparison between the standard back propagation algorithm with propagation with additional momentum. For standard backpropagation algorithm convergence speed of 727 epoch with MSE value of 0.01 , while the standard back propagation algorithm reaches 4000 epoch with MSE value of 0.001 . , This shows that adaptive learning backpropagation algorithm more quickly achieve convergence than the standard back propagation algorithm. Algoritma backpropagation merupakan multi layer perceptron yang banyak digunakan untuk menyelesaikan persoalan yang luas, namun algoritma backpropagation juga mempunyai keterbatasan yaitu laju konvergensi yang cukup lambat. Pada penelitian ini penulis menambahkan parameter learning rate secara adaptif pada setiap iterasi dan koefisien momentum untuk menghitung proses perubahan bobot. Dari hasil simulasi komputer maka diperoleh perbandingan antara algoritma backpropagation standar dengan backpropagation dengan penambahan momentum. Untuk algoritma backpropagation standar kecepatan konvergensi 727 epoch dengan nilai MSE 0,01, sedangkan algoritma backpropagation standar mencapai 4000 epoch dengan nilai MSE 0,001. . Hal ini menunjukkan bahwa algoritma backpropagation adaptive learning lebih cepat mencapai konvergensi daripada algoritma backpropagation standar.
Collections
- Master Theses [621]