Deteksi Objek Abnormal Pada Paru-Paru Berdasarkan Citra X-Ray Toraks dengan Menggunakan Algoritma You Only Look Once (Yolo)
View/ Open
Date
2021Author
Adji, Wira Ardi Kesuma
Advisor(s)
Amalia
Herriyance
Metadata
Show full item recordAbstract
In diagnosing pulmonary diseases, physicians usually perform a radiologic examination on pulmonary conditions by ensuring the presence of special findings or abnormal conditions. Detecting abnormal conditions may be conducted using a thorax x-ray. This study aimed to construct a model to detect abnormal objects using the Yolov5 algorithm on thorax x-ray images. Fourteen abnormal objects were detected, i.e., aortic enlargement, atelectasis, calcification, cardiomegaly, consolidation, ILD (interstitial lung disease), infiltration, lung opacity, nodule/mass, other lesions, pleural effusion, pleural thickening, pneumothorax, and pulmonary fibrosis. In building the training model, several methods are used to increase the accuracy of the model, namely weighted boxes fusion (WBF), image transformation using contrast limited adaptive histogram equalization (CLAHE), and data augmentation. The best accuracy results obtained from the model by doing 100 epochs training is 70%. In addition to building models, a web-based application was built which is expected to help doctors learn and simplify the process of diagnosing diseases of the lungs. Dalam mendiagnosis penyakit pada paru-paru biasanya dokter akan melakukan pemeriksaan radiologi terhadap kondisi paru-paru dengan memastikan adanya temuan khusus atau kondisi abnormal. Untuk mendeteksi kondisi abnormal yang terjadi dilakukan pemeriksaan melalui x-ray toraks. Penelitian ini bertujuan untuk membangun model untuk mendeteksi objek abnormal menggunakan algoritma Yolov5 pada citra x-ray toraks. Terdapat 14 objek abnormal yang akan dideteksi diantaranya aortic enlargement, atelectasis, calcification, cardiomegaly, consolidation, ILD (interstitial lung disease), infiltration, lung opacity, nodule/mass, other lesion, pleural effusion, pleural thickening, pneumothorax, dan pulmonary fibrosis. Dalam membangun model training digunakan beberapa metode untuk meningkatkan akurasi model yaitu weighted boxes fusion (WBF), transformasi citra menggunakan contrast limited adaptive histogram equalization (CLAHE), dan data augmentation. Hasil akurasi terbaik yang didapatkan dari model dengan melakukan training sebanyak 100 epoch adalah 70%. Selain membangun model, dibangun aplikasi berbasis web yang diharapkan dapat membantu dokter untuk belajar dan mempermudah dalam proses diagnosis penyakit pada paru-paru.
Collections
- Undergraduate Theses [1180]