Show simple item record

dc.contributor.advisorJaya, Ivan
dc.contributor.advisorNurhasanah, Rossy
dc.contributor.authorSalsabila, Melati Yulvira
dc.date.accessioned2022-01-07T01:56:20Z
dc.date.available2022-01-07T01:56:20Z
dc.date.issued2021
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/46607
dc.description.abstractPeternak burung puyuh memerlukan cara yang tepat untuk memperoleh keuntungan dari hasil produksi yang sesuai dengan kebutuhan. Oleh karena itu, peternak burung puyuh perlu melihat forecasting (peramalan) produksi telur puyuh. Peramalan adalah proses memperkirakan data masa mendatang secara sistematis berdasarkan data masa lalu. Pada penelitian ini algoritma ARIMA (Autoregressive Integrated Moving Average) diterapkan untuk meramalkan produksi telur puyuh. Algoritma ARIMA dipilih karena dapat melakukan peramalan jangka pendek (kurang dari 2 tahun) data deret waktu yang cukup akurat dari data masa lalu. Data yang digunakan adalah data produksi telur puyuh dari peternakan burung puyuh di Langkat, Sumatera Utara dari Januari 2015 sampai Desember 2020 untuk peramalan data Januari 2021 sampai Desember 2022. MAPE (Mean Absolute Percentage Error) digunakan sebagai pengukuran ketepatan model peramalan. Hasil peramalan dibagi menjadi 4 data, yaitu peramalan data jumlah burung puyuh dengan model terbaik ARIMA(0,1,0) dan kesalahan peramalan MAPE = 1.4%, peramalan data jumlah telur puyuh bercorak dengan model terbaik ARIMA(0,1,1) dan kesalahan peramalan MAPE = 1.3%, peramalan data jumlah telur puyuh tidak bercorak dengan model terbaik ARIMA(0,1,1) dan kesalahan peramalan MAPE = 4%, serta peramalan data total produksi telur puyuh dengan model terbaik ARIMA(0,1,1) dan kesalahan peramalan MAPE = 1.1%. Berdasarkan hasil penelitian yang sudah diperoleh, sistem peramalan produksi telur puyuh dengan menggunakan algoritma ARIMA sudah sangat baik dalam meramalkan data selama 2 tahun ke depan yang dapat dilihat dari nilai MAPE masing-masing data dimana nilai MAPE < 10% merupakan nilai dengan kesalahan peramalan sangat baik.en_US
dc.description.abstractQuail breeders need the right way to profit from the production that suits their needs. Therefore, quail breeders need to look at forecasting quail egg production. Forecasting is the process of systematically estimating future data based on past data. In this study, ARIMA (Autoregressive Integrated Moving Average) algorithm was applied to predict quail egg production time data. The ARIMA algorithm was chosen because it can forecast short-term (less than 2 years) time series data which is quite accurate from past data. The data used is monthly time series data for quail egg production from quail farms in Langkat, North Sumatra from January 2015 to December 2020 for forecasting data from January 2021 to December 2022. MAPE (Mean Absolute Percentage Error) is used as a measurement of the forecasting errors. Forecasting results into 4 data, namely forecasting data on the number of quails with the best model ARIMA(0,1,0) and forecasting error MAPE = 1.4%, forecasting data on the number of quail eggs with the best model ARIMA(0,1,1) and forecasting error MAPE = 1.3%, data for forecasting the number of quail eggs is not patterned with the best model ARIMA(0,1,1) and forecasting error MAPE = 4%, and forecasting data for total quail egg production with the best model ARIMA(0, 1 ,1) and forecasting error MAPE = 1.1%. Based on the research that has been obtained, forecasting quail eggs using the ARIMA algorithm is very good in estimating time series data for the next 2 years which can be seen from the MAPE of each data where the MAPE value < 10% is a value with very good forecasting error.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPeramalanen_US
dc.subjectTelur Puyuhen_US
dc.subjectARIMAen_US
dc.subjectMAPEen_US
dc.titlePeramalan Produksi Telur Puyuh Berdasarkan Data Deret Waktu Menggunakan Autoregressive Integrated Moving Averageen_US
dc.typeThesisen_US
dc.identifier.nimNIM171402007
dc.description.pages94 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record