dc.contributor.advisor | Muchtar, Muhammad Anggia | |
dc.contributor.advisor | Purnamawati, Sarah | |
dc.contributor.author | Sibuea, Tirza Priskila Kinanti | |
dc.date.accessioned | 2022-05-23T03:40:36Z | |
dc.date.available | 2022-05-23T03:40:36Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/48592 | |
dc.description.abstract | The concept of digitization can be utilized in various things, including cultural sector.
It intends to facilitate and help the works of community without consuming a lot of time
and less of effort with the help of technology. The digitizing system of Batak manuscript
helps users in converting the content of Batak manuscript on one image (*.jpg) into a
digital document (*.docx) automatically. Application of Faster R-CNN as an object
detection algorithm supports the system in recognizing and identifying objects in the
form of Batak manuscripts contained in the input image. The system development
consists of several stages—pre-processing, processing, and post-processing—and
including data training process. The testing process of this application resulting an
average accuracy of 90.2%. | en_US |
dc.description.abstract | Konsep digitalisasi dapat dimanfaatkan pada berbagai sektor, termasuk kebudayaan.
Hal ini bertujuan membantu masyarakat dalam memudahkan aktivitas atau pekerjaan
secara efektif dan optimal tanpa memakan banyak waktu serta usaha dengan bantuan
teknologi. Sistem digitalisasi surat Batak membantu pengguna dalam mendapatkan
hasil konversi digital dari isi citra dokumen surat Batak (*.jpg) dalam bentuk *.docx
secara otomatis. Penggunaan metode deteksi objek Faster R-CNN membantu sistem
dalam mengenali dan mengidentifikasi objek yang berupa aksara Batak yang
terkandung dalam citra input. Pembangunan sistem dilakukan dengan melakukan
tahapan berupa pre-processing, processing, post-processing serta melibatkan proses
pelatihan data. Berdasarkan hasil pengujian sistem, penerapan metode deteksi objek
Faster R-CNN dalam digitalisasi surat Batak menghasilkan rata-rata akurasi sebesar
90.2%. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Digitalisasi | en_US |
dc.subject | Optical Character Recognition | en_US |
dc.subject | aksara Batak | en_US |
dc.subject | deteksi objek | en_US |
dc.subject | Faster R-CNN | en_US |
dc.title | Penerapan Metode Deteksi Objek Faster R-Cnn dalam Digitalisasi Surat Batak | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM161402110 | |
dc.description.pages | 79 Halaman | |
dc.description.type | Skripsi Sarjana | en_US |