dc.contributor.advisor | Sitompul, Opim Salim | |
dc.contributor.advisor | Tulus | |
dc.contributor.advisor | Nababan, Erna Budhiarti | |
dc.contributor.author | Hartono | |
dc.date.accessioned | 2018-08-01T02:30:23Z | |
dc.date.available | 2018-08-01T02:30:23Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://repositori.usu.ac.id/handle/123456789/4938 | |
dc.description.abstract | In the classification, the dataset is said to be imbalanced when there is a class with a smaller
amount of data than the other classes. Class imbalance is a problem because machine
learning will produce a good classification accuracy of the class with a large number of
members (majority class), while the class with the number of minor members (minority
class) has a poor accuracy when minority class often become an interesting class to be
observed (positive class). One of the existing methods is the Hybrid Ensembles method
which is an ensemble learning method that combines bagging and boosting. In the handling
of class imbalance it is necessary to pay attention to the number of classifier and diversity
(diversity) data. The results show that Hybrid Ensembles require a large number of classifier
and certainly need to maintain data diversity. This research is intended to optimize the results
of the hybrid ensemble method, especially in reducing the number of classifier and also
maintaining good data diversity. The number of classifier will be reduced through the
application of preprocessing using Random Balance Ensemble Method method and also the
data diversity can be maintained by using Different Contribution Sampling method. The
results show that Hybrid Approach Redefinition (HAR) Method can reduce the number of
classifier and maintain data diversity. | en_US |
dc.description.abstract | Di dalam klasifikasi, dataset dikatakan tidak seimbang (imbalanced) ketika terdapat suatu
class dengan jumlah data yang yang lebih kecil dibandingkan dengan class yang lain. Class
imbalance merupakan masalah karena machine learning akan menghasilkan akurasi
klasifikasi yang baik terhadap class dengan jumlah anggota yang banyak (majority class),
sedangkan kelas dengan jumlah anggota sedikit (minority class) memiliki akurasi yang
kurang baik padahal minority class sering menjadi class yang menarik untuk diamati
(positive class). Salah satu metode yang ada adalah metode Hybrid Ensembles yang
merupakan metode ensemble learning yang menggabungkan bagging dan boosting. Di
dalam penanganan class imbalance tersebut perlu memperhatikan jumlah classifier dan
keanekaragaman (diversity) data. Hasil penelitian menunjukkan bahwa Hybrid Ensembles
memerlukan jumlah classifier yang besar dan tentunya perlu mempertahankan
keanekaragaman data. Penelitian ini dimaksudkan untuk melakukan optimisasi terhadap
hasil dari metode hybrid ensemble khususnya di dalam mengurangi jumlah classifier dan
juga mempertahankan keanekaragaman data yang baik. Jumlah classifier akan dikurangi
melalui penerapan preprocessing dengan menggunakan metode Random Balance Ensemble
Method dan juga keanekaragaman data dapat dipertahankan dengan menggunakan metode
Different Contribution Sampling. Hasil penelitian menunjukkan bahwa Hybrid Approach
Redefinition (HAR) Method dapat mengurangi jumlah classifier dan mempertahankan
keanekaragaman data. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Class Imbalance | en_US |
dc.subject | Majority Class | en_US |
dc.subject | Minority Class | en_US |
dc.subject | Hybrid Ensembles | en_US |
dc.subject | Random Balance Ensemble Method | en_US |
dc.subject | Different Contribution Sampling | en_US |
dc.title | Hybrid Approach Redefinition (HAR) Method dalam Permasalahan Class Imbalance | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM148123002 | en_US |
dc.identifier.submitter | Nurhusnah Siregar | |
dc.description.type | Disertasi Doktor | en_US |