• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Undergraduate Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Klasifikasi Impaksi Gigi Molar Ketiga Menggunakan Convolutional Neural Network

    View/Open
    Fulltext (2.701Mb)
    Date
    2021
    Author
    Rambe, Ahmad Abror
    Advisor(s)
    Purnamawati, Sarah
    Jaya, Ivan
    Metadata
    Show full item record
    Abstract
    The third molar of impacted teeth is a condition which the wisdom teeth are difficult to grow and develop normally. It caused by there is no space. The clinical diagnosis of impacted wisdom teeth can be made by examining the dental x-rays through a panoramic x-ray of the teeth to see the position of the teeth in the arch. There are three types of classes in classifying third molars, i.e., class I, class II, and class III. This study aimed to construct a model to classify third molars based on their class using the Convolutional Neural Network (CNN). In building the model, several methods are used to improve the accuracy of the model, namely resizing, contrast limited adaptive histogram equalization (CLAHE), and segmentation. The results obtained from the accuracy that has been in training is 70%. Application development was also carried out in this study to assist in the use of the application for the classification process of class types on impacted wisdom teeth.
     
    Impaksi molar ketiga merupakan kondisi dimana gigi bungsu kesulitan untuk tumbuh dan berkembang secara normal dikarenakan tidak adanya ruang. Diagnosis klinis pada impaksi gigi molar ketiga dapat dilakukan dengan pemeriksaan melalui panoramik x-ray gigi untuk melihat posisi gigi dalam lengkung rahang. Terdapat tiga jenis kelas dalam mengklasifikasi gigi molar ketiga yaitu kelas I, kelas II, dan kelas III. Sehingga tujuan penelitian untuk membangun model yang dapat digunakan untuk mengklasifikasi gigi molar ketiga berdasarkan kelasnya dengan menerapkan algoritma convolutional neural network (CNN). Dalam membangun model digunakan beberapa metode untuk meningkatkan akurasi model yaitu resizing, contrast limited adaptive histogram equalization (CLAHE), dan segmentation. Hasil akurasi yang didapat dari model yang telah di training adalah 70%. Pembangunan aplikasi juga dilakukan pada penelitian ini untuk membantu dalam penggunaan aplikasi untuk proses klasifikasi jenis kelas pada impaksi gigi molar ketiga.

    URI
    https://repositori.usu.ac.id/handle/123456789/49537
    Collections
    • Undergraduate Theses [796]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV