Show simple item record

dc.contributor.advisorTulus, Tulus
dc.contributor.advisorSitompul, Opim Salim
dc.contributor.authorGusti, Dewi
dc.date.accessioned2022-10-20T03:48:40Z
dc.date.available2022-10-20T03:48:40Z
dc.date.issued2016
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/50738
dc.description.abstractThis thesis discusses how to verify the nonlinear functional equation using Newton iteration. Has been long recognized that in determining solutions nonlinear equations, numerical methods used to approximate the optional solution is the method of Newton. Newton’s method requires the steps presented in the algorithm so that the term iteration, the calculation process, so that iteration may be regarded as Newton iteration. This calculation process needs to be revisited truth steps (verification). Verification of numerical algorithms described using a residual based on Newton iteration used in the functional equations in infinite-dimensional.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectMetode verifikasi numeriken_US
dc.subjectPersamaan fungsional tak linieren_US
dc.subjectIterasi Newtonen_US
dc.titleVerifikasi metode Numerik untuk Persamaan Fungsional Tak Linier dengan Iterasi Newtonen_US
dc.typeThesisen_US
dc.identifier.nimNIM147021017
dc.identifier.nidnNIDN0001096202
dc.identifier.nidnNIDN0017086108
dc.identifier.kodeprodiKODEPRODI44101#Matematika
dc.description.pages46 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record