• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisa Kinerja Metode Naive Bayes Dengan Pembobotan Data

    View/Open
    Fulltext (2.464Mb)
    Date
    2021
    Author
    Afdhaluzzikri, Afdhaluzzikri
    Advisor(s)
    Mawekang, Herman
    Sitompul, Opim Salim
    Metadata
    Show full item record
    Abstract
    Classification using naive bayes algorithm for air quality dataset has an accuracy rate of 39.97%. This result is considered not good and by using all existing data attributes. By doing pre-processing, namely feature selection using the gain ratio algorithm, the accuracy of the Naive Bayes algorithm increases to 61.76%. This proves that the gain ratio algorithm can improve the performance of the naive bayes algorithm for air quality dataset classification. Classification using naive bayes algorithm for air quality dataset. While the Water Quality dataset has an accuracy rate of 93.18%. These results are considered good and by using all existing data attributes. By doing pre-processing, namely feature selection using the gain ratio algorithm, the accuracy of the Naive Bayes algorithm increases to 95.73%. This proves that the gain ratio algorithm can improve the performance of the naive bayes algorithm for air quality dataset classification. Classification using Naive Bayes algorithm for Water Quality dataset. Based on the tests that have been carried out on all data, it can be seen that the Weight nave Bayes classification model can provide better accuracy values because there is a change in the weighting of the attribute values in the dataset used. The value of the weighted Gain ratio is used to calculate the probability in Naïve Bayes, which is a parameter to see the relationship between each attribute in the data, and is used as the basis for the weighting of each attribute of the dataset. The higher the Gain ratio of an attribute, the greater the relationship to the data class. So that the accuracy value increases than the accuracy value generated by the Naïve Bayes classification model. The increase in accuracy in the Naïve Bayes classification model is due to the amount of weight accuracy from the attribute selection in the Gain ratio.
    URI
    https://repositori.usu.ac.id/handle/123456789/50806
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV