Show simple item record

dc.contributor.advisorMawengkang, Herman
dc.contributor.advisorSitompul, Opim Salim
dc.contributor.authorThoyib, Azmi
dc.date.accessioned2022-10-31T06:22:35Z
dc.date.available2022-10-31T06:22:35Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/51266
dc.description.abstractThe success of increasing the accuracy of the dataset using the distance model is very influential on all attributes, so it greatly affects the accuracy of the data. Principal Component Analysis (PCA) and Gini Index methods are techniques used to simplify data that works by reducing attribute features that have improved the performance of data classification accuracy of Mushroom Pleurotus Ostreatus Dataset. The results and comparisons of the level of accuracy using the Conventional KNN method were compared with the KNN and PCA methods, then compared with the KNN + Gini Index classification method using the Mushroom dataset from Kaggle.com and the Pleurotus Ostreatus Dataset which in the process that has been carried out has an accuracy value. with the comparison process between Conventional KNN with a comparison of 20.99% between the two and K- .NN+Gini Index on the Mushroom Pleurotus Ostreatus dataset is 11.70% while the comparison between the two algorithms has an accuracy of K-.NN Conventional with K-.NN+PCA reaches 8.70 % on Mushroom Dataset and Pleurotus Ostreatus Dataset.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectK-Nearest Neighboren_US
dc.subjectPrincipal Component Analysisen_US
dc.subjectGini Indexen_US
dc.subjectAccuracyen_US
dc.titleAnalisa Reduksi Atribut pada Algoritma K-NN dengan PCA dan Gini Indexen_US
dc.typeThesisen_US
dc.identifier.nimNIM187038050
dc.identifier.nidnNIDN8859540017
dc.identifier.nidnNIDN 0017086108
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages69 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record