Show simple item record

dc.contributor.advisorSuwilo, Saib
dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.authorHuzaifah, Ade Sarah
dc.date.accessioned2022-11-10T09:08:03Z
dc.date.available2022-11-10T09:08:03Z
dc.date.issued2014
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/57652
dc.description.abstractTraveling Salesman Problem (TSP) is a classical combinatorial optimization problem which is becoming a standard for testing computational algorithm. Many methods can be used to solve the TSP, one of which is a Genetic Algorithm. Genetic Algorithm generates a population of candicate solutions comeptition (route) and then cause them to evolve through a process of natural selection. Bad solutions tend to die, while better solutions survive and reproduce. By repeating this process over and over again Genetic Algorithm spawned an optimal solution (the shortest route) on the TSP Problem. However, the performance of Genetic Algorithm is heavily influenced by its Operator and parameters. One of the Genetic Algorithm’s operator is crossover operators. Partially Mapped crossover (PMX) and cycle Crossover (CX) is a commonly used method of crossover for TSP problemsen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCycle Crossoveren_US
dc.subjectGenetic Algorithmen_US
dc.subjectPartially Mapped Crossoveren_US
dc.subjectTraveling Saleman Problemen_US
dc.titlePengukuran Kinerja Partially Mapped Crossover dan Cycle Crossover pada Genetic Algorithmen_US
dc.typeThesisen_US
dc.identifier.nimNIM117038008
dc.identifier.nidnNIDN0009016402
dc.identifier.nidnNIDN0026106209
dc.identifier.kodeprodiKODEPRODI55101#TeknikInformatika
dc.description.pages116 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record