Show simple item record

dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorMawengkang, Herman
dc.contributor.authorParlina, Iin
dc.date.accessioned2022-11-11T03:50:38Z
dc.date.available2022-11-11T03:50:38Z
dc.date.issued2017
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/58011
dc.description.abstractBased on the analysis algorithm performance clustering models Tsukamoto Fuzzy and Fuzzy C-Means displays seyeral variables that vary in number. For grouping was done to determine the value of the performance of the algorithm is effective. And therefore, needed a method to facilitate the grouping of employee value. With fuzzy clustering approach, the division of labor based on the target group or the values Main Duties (Tu), Competence (Kom) and Compliance (Kep). In this research clustering process value using Fuz4, C-Means algorithm. By using Fw4t C-Means aims to facilitate categorize a value with the result of the rule Excellent value (1.765), Better (0,900), Good + (0.59), OKay (0.405), Almost Good (0.206) and No Good ( 0.121). From the results obtained both models is to have a good performance and the results are equally equivalents.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectPerformanceen_US
dc.subjectTsukamotoen_US
dc.subjectFCMen_US
dc.subjectClustering Rateen_US
dc.titleAnalisis Kinerja Algoritma Clustering Fuzzy C-Means dengan Fuzzy Tsukamotoen_US
dc.typeThesisen_US
dc.identifier.nimNIM147038079
dc.identifier.nidnNIDN 0010116706
dc.identifier.nidnNIDN8859540017
dc.identifier.kodeprodiKODEPRODI55101#TeknikInformatika
dc.description.pages91 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record