Show simple item record

dc.contributor.advisorSutarman, Sutarman
dc.contributor.advisorMawengkang, Herman
dc.contributor.authorRusdi, Ibnu
dc.date.accessioned2022-11-11T07:42:17Z
dc.date.available2022-11-11T07:42:17Z
dc.date.issued2007
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/58396
dc.description.abstractThe Least Absolute Value (LAV) has long been viewed as an attractive to OLS regression, however, in contract with OLS regression, there are so formulas for estimating the slope and intercept the LAV regression line. Several algorithm exist for these estimate in particular, the linear (goal) programming approach has received much attention. Regression lines estimated by ordinary least square are more severely affected by outliner or extreme data points, than those estimated with the LAV modelen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.titleEstimasi Koefisien Acak Model Vektor Autoregresien_US
dc.typeThesisen_US
dc.identifier.nimNIM057021008
dc.identifier.nidnNIDN0026106305
dc.identifier.nidnNIDN8859540017
dc.identifier.kodeprodiKODEPRODI44101#Matematika
dc.description.pages31 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record