• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Kestabilan Solusi Model Predator-Prey Hutchinson dengan Waktu Tunda dan Fungsi Respon Tipe Holling II

    View/Open
    Full text (272.7Kb)
    Date
    2018
    Author
    Sitinjak, Anna Angela
    Advisor(s)
    Mawengkang, Herman
    Ramli, Marwan
    Metadata
    Show full item record
    Abstract
    In this paper, we discuss the modified of the predator-prey Hutchinson model from the Lotka-Voltera model with the addition of time delay on the growth rate of the prey and the holling type II response function on the interaction between predator and prey populations. This study aims to know the mathematical model of predator-prey with time delay and the holling type II response function and to analyze the stability of solution of model gotten. The methods which are used to analyze the stability of the solution are linearization and eigenvalues of the Jacobian matrix. The results show that from predator prey Hutchinson model with response function of holling type II obtained three fixed (equilibrium) point, but only two fixed points that can be stable under certain conditions. While the time delay ( > 0) can change the stability of fixed point x 3 from stable to unstable.
     
    Dalam tesis ini, dibahas model predator-prey Hutchinson yang dimodifikasi dari model Lotka-Voltera dengan penambahan waktu tunda pada tingkat pertumbuhan prey dan fungsi respons tipe holling II pada interaksi antara populasi predator dan mangsa. Penelitian ini bertujuan untuk menentukan model matematika predator-prey dengan waktu tunda dan fungsi respon tipe holling II dan menganalisis kestabilan solusi model yang diperoleh. Metode yang digunakan untuk menganalisis kestabilan solusinya adalah pelinearan dan nilai eigen dari matriks Jacobian. Hasil penelitian menunjukkan bahwa dari model predatorprey dengan fungsi respon holling tipe II tanpa waktu tunda diperoleh tiga titik tetap (ekuilibrium) tetapi hanya dua titik tetap yang dapat stabil pada kondisi tertentu. Sedangkan waktu tunda ( > 0) dapat mengubah kestabilan titik tetap 3 dari stabil menjadi tidak stabil.

    URI
    http://repositori.usu.ac.id/handle/123456789/6320
    Collections
    • Master Theses [412]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV