Show simple item record

dc.contributor.advisorSuyanto
dc.contributor.advisorPutra, Mohammad Fadly Syah
dc.contributor.authorYunita, Tika
dc.date.accessioned2022-12-14T08:38:58Z
dc.date.available2022-12-14T08:38:58Z
dc.date.issued2012
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/73627
dc.description.abstractTraffic accidents is an event that often occure around us. Traffic accident cause a variety of risks. The risks of accidents experienced by each person is different in each event. It can be divided into several categories of risk of traffic accidents or commonly known as the injury severity. In this study explains about the application of the method Resilient Backpropagation Neural Network to predict the severity of injury. This method is used to avoid a small gradient changes during the update process with Sigmoid activation function that causes the formation of a slow network. The result of this paper are resulting learning process more faster and better to predict the dominant factor of injury severity of traffic accidents.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectInjury Severityen_US
dc.subjectNeural Networken_US
dc.subjectBackpropagationen_US
dc.subjectResilient Propagationen_US
dc.titleJaringan Saraf Tiruan Resilient Backpropagation untuk Memprediksi Faktor Dominan Injury Severity pada Kecelakaan Lalu Lintasen_US
dc.typeThesisen_US
dc.identifier.nimNIM071402008
dc.identifier.nidnNIDN0013085903
dc.identifier.nidnNIDN0029018304
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages107 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record