• Login
    View Item 
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Mathematics and Natural Sciences
    • Department of Mathematics
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ranking dari Graph

    View/Open
    Fulltext (1.111Mb)
    Date
    2008
    Author
    Nababan, Mangambit
    Advisor(s)
    Suwilo, Saib
    Sitompul, Opim Salim
    Metadata
    Show full item record
    Abstract
    In ranking, one is given examples of order relationships among objects, and the goal is to learn from these examples a real-valued ranking function that induces a ranking or ordering over the object space. We consider the problem of learning such a ranking function when the data is represented as a graph, in which vertices correspond to objects and edges encode similarities between objects. Building on recent development in regularization theory for graphs and corresponding Laplacian-based methods for classification, we develop an algorithmic framework for learning ranking functions on graph data.
    URI
    https://repositori.usu.ac.id/handle/123456789/73882
    Collections
    • Master Theses [412]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV