Show simple item record

dc.contributor.advisorArisandi, Dedy
dc.contributor.advisorNurhasanah, Rossy
dc.contributor.authorPulungan, Aflah Mutsanni
dc.date.accessioned2022-12-19T03:04:29Z
dc.date.available2022-12-19T03:04:29Z
dc.date.issued2022
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/75116
dc.description.abstractNext Generation Sequencing (NGS) is a machine that can read Single Nucleotide Polymorphism on a genome, including the soybean genome used in this study. However, the machine has a high error rate so that more SNP candidate data are found which are caused by errors when reading the NGS machine compared to the actual SNP candidate data. Then the data generated by the NGS also has an imbalance problem, where the number of negative SNPs is more than the number of positive SNPs. To overcome the imbalanced data, researchers will use Tomek Links and Random Undersampling which aims to eliminate noise data and form a new dataset. Then the SNP identification process uses a method that can classify large amounts of data, namely Artificial Neural Network. The resulting model is formed from Artificial Neural Network hyperparameters, namely epoch 10, activation function using Log Softmax and batch size 64. In addition to Artificial Neural Network, Random Undersampling also uses hyperparameter sampling strategy/balance ratio of 0.4. Based on the evaluation that has been done, the G-Mean is 93 with these results it can be concluded that the methods Random Undersampling and Artificial Neural Network used in this study can identify SNPs well.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectNext Generation Sequencingen_US
dc.subjectSingle Nucleotide Polymorphismen_US
dc.subjectsoybeanen_US
dc.subjectimbalanced dataen_US
dc.subjectTomek Linksen_US
dc.subjectRandom Undersamplingen_US
dc.subjectArtificial Neural Networken_US
dc.subjecthyperparameteren_US
dc.subjectepochen_US
dc.subjectactivation functionen_US
dc.subjectLog Softmaxen_US
dc.subjectbatch sizeen_US
dc.subjectsampling strategyen_US
dc.titleKombinasi Metode Tomek-Links dan Random Undersampling untuk Identifikasi Single Nucleotide Polymorphism Menggunakan Artificial Neural Network pada Genom Kedelaien_US
dc.typeThesisen_US
dc.identifier.nimNIM171402012
dc.identifier.nidnNIDN0031087905
dc.identifier.nidnNIDN0001078708
dc.identifier.kodeprodiKODEPRODI59201#Teknologi Informasi
dc.description.pages82 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record