Show simple item record

dc.contributor.advisorZarlis, Muhammad
dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.authorHariyanto, Eko
dc.date.accessioned2022-12-28T08:47:22Z
dc.date.available2022-12-28T08:47:22Z
dc.date.issued2012
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/78759
dc.description.abstractRivest Shamir Adleman (RSA) is the most widely used crypto systems in security applications. Cryptographic security of RSA lies in the difficulty of factoring numbers p and q to be prime factors. The larger the value of p and q are used, the more secure the key is applied. But this can make the decryption process becomes very slow. A variety of methods to speed up the decryption process has been widely used and one of them is the Chinese Remainder Theorem. In this study, we analyzed Aryabhata Remainder Theorem, a method used to solve problems such as methods of residue number Chinese Remainder Theorem. we compare the RSA decryption process using the method of Aryabhata Remainder Theorem and RSA decryption using the Chinese Remainder Theorem to find a faster method in the RSA decryption process with the large key (the value of p and q).en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectRivest Shamir Adleman (RSA)en_US
dc.subjectdecryptionen_US
dc.subjectAryabhata Remainder Theoremen_US
dc.subjectChinese Remainder Theoremen_US
dc.titleAnalisis Aryabhata Remainder Theorem dalam Kriptografi Rivest Shamir Adleman (RSA)en_US
dc.typeThesisen_US
dc.identifier.nimNIM107038006
dc.identifier.nidnNIDN0001075703
dc.identifier.nidnNIDN0026106209
dc.identifier.kodeprodiKODEPRODI55101#TeknikInformatika
dc.description.pages74 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record