• Login
    View Item 
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    •   USU-IR Home
    • Faculty of Computer Science and Information Technology
    • Department of Information Technology
    • Master Theses
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Clustering Menggunakan Normalized Cross Correlation pada Algoritma Fuzzy C– Means Clustering

    View/Open
    Fulltext (1.942Mb)
    Date
    2022
    Author
    Kembaren, Ricky Crist Geoversam Imantara
    Advisor(s)
    Sitompul, Opim Salim
    Sawaluddin
    Metadata
    Show full item record
    Abstract
    Fuzzy C-Means Clustering (FCM) has been widely known as a technique for performing data clustering, such as image segmentation. This study will conduct a trial using the Normalized Cross Correlation method on the Fuzzy CMeans Clustering algorithm in determining the value of the initial fuzzy pseudopartition matrix which was previously carried out by a random process. Clustering technique is a process of grouping data which is included in unsupervised learning. Data mining generally has two techniques in performing clustering, namely: hierarchical clustering and partitional clustering. The FCM algorithm has a working principle in grouping data by adding up the level of similarity between pairs of data groups. The method applied to measure the similarity of the data based on the correlation value is the Normalized Cross Correlation (NCC). The methodology in this research is the steps taken to measure clustering performance by adding the Normalized Cross Correlation (NCC) method in determining the initial fuzzy pseudo-partition matrix in the Fuzzy C-Means Clustering (FCM) algorithm. the results of data clustering using the Normalized Cross Correlation (NCC) method on the Fuzzy C-Means Clustering (FCM) algorithm gave better results than the ordinary Fuzzy C-Means Clustering (FCM) algorithm. The increase that occurs in the proposed method is 4.27% for the Accuracy, 4.73% for the rand index and 8.26% for the F-measure.
    URI
    https://repositori.usu.ac.id/handle/123456789/82251
    Collections
    • Master Theses [621]

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsKeywordsTypesBy Submit Date

    My Account

    LoginRegister

    Repositori Institusi Universitas Sumatera Utara (RI-USU)
    Universitas Sumatera Utara | Perpustakaan | Resource Guide | Katalog Perpustakaan
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV