Reduksi dan Bentuk Normal Matriks Pensil
dc.contributor.advisor | Tulus, Tulus | |
dc.contributor.advisor | Suwilo, Saib | |
dc.contributor.author | Panggabean, Suvriadi | |
dc.date.accessioned | 2023-07-18T07:45:44Z | |
dc.date.available | 2023-07-18T07:45:44Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/85927 | |
dc.description.abstract | Matrix Pencils A - ),J3 is a generalized eigenvalue,· where ,,\ is a eigenvafoe that corresponding with det (A - >.B) = 0, A and B is a. matrix square non singular, such that matrix pencils divide into two type, regular pencils and singular pencils. All matrix pencils A - B can be reduced to a canonical form (with equivalence transformation) and all matrix pencils A->.B can be find the canonical form such as then we call the normal form of matrix pencils, and furthermore, the canonical form of matrix pencils represented in kronecker canonical form. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Matrix pencils | en_US |
dc.subject | Equivalence transformation | en_US |
dc.subject | Canonical form | en_US |
dc.subject | Kronecker canonical form | en_US |
dc.subject | SDGs | en_US |
dc.title | Reduksi dan Bentuk Normal Matriks Pensil | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM127021004 | |
dc.identifier.nidn | NIDN0001096202 | |
dc.identifier.nidn | NIDN0009016402 | |
dc.identifier.kodeprodi | KODEPRODI44101#Matematika | |
dc.description.pages | 46 Halaman | en_US |
dc.description.type | Tesis Magister | en_US |
Files in this item
This item appears in the following Collection(s)
-
Master Theses [412]
Tesis Magister