Show simple item record

dc.contributor.advisorMawengkang, Herman
dc.contributor.advisorSitompul, Opim Salim
dc.contributor.authorZarkasyi, Muhammad Imam
dc.date.accessioned2023-10-25T02:19:51Z
dc.date.available2023-10-25T02:19:51Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/88277
dc.description.abstractThe initial process of clustering the K-Means algorithm is to determine the initial cluster center point (centroid). The selection of the initial centroid in the K-Means algorithm greatly determines the output of the clustering process. The selection of centroids that is often done in the K-Means algorithm is random. However, in this study, the selection of centroids in the K-Means algorithm was carried out by taking the highest data from the AHC (Agglomerative Hierarchical Clustering) algorithm cluster. This study compares the accuracy values obtained from conventional K- Means with K-Means using AHC. The SSE results obtained on the k-means algorithm using AHC have increased compared to conventional K-Means by 4.8% in 2 clusters and 14.3% in 3 clusters.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectCentroiden_US
dc.subjectClusteringen_US
dc.subjectK-Meansen_US
dc.subjectAHCen_US
dc.subjectSDGsen_US
dc.titleOptimasi Kinerja Algoritma K-Means pada Penentuan Data Centroid dengan Menggunakan Algoritma Agglomerative Hierarchical Clusteren_US
dc.typeThesisen_US
dc.identifier.nimNIM197038020
dc.identifier.nidnNIDN8859540017
dc.identifier.nidnNIDN0017086108
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages80 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record