dc.contributor.advisor | Mawengkang, Herman | |
dc.contributor.advisor | Sitompul, Opim Salim | |
dc.contributor.author | Zarkasyi, Muhammad Imam | |
dc.date.accessioned | 2023-10-25T02:19:51Z | |
dc.date.available | 2023-10-25T02:19:51Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositori.usu.ac.id/handle/123456789/88277 | |
dc.description.abstract | The initial process of clustering the K-Means algorithm is to determine the initial cluster center point (centroid). The selection of the initial centroid in the K-Means algorithm greatly determines the output of the clustering process. The selection of centroids that is often done in the K-Means algorithm is random. However, in this study, the selection of centroids in the K-Means algorithm was carried out by taking the highest data from the AHC (Agglomerative Hierarchical Clustering) algorithm cluster. This study compares the accuracy values obtained from conventional K- Means with K-Means using AHC. The SSE results obtained on the k-means algorithm using AHC have increased compared to conventional K-Means by 4.8% in 2 clusters and 14.3% in 3 clusters. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Sumatera Utara | en_US |
dc.subject | Centroid | en_US |
dc.subject | Clustering | en_US |
dc.subject | K-Means | en_US |
dc.subject | AHC | en_US |
dc.subject | SDGs | en_US |
dc.title | Optimasi Kinerja Algoritma K-Means pada Penentuan Data Centroid dengan Menggunakan Algoritma Agglomerative Hierarchical Cluster | en_US |
dc.type | Thesis | en_US |
dc.identifier.nim | NIM197038020 | |
dc.identifier.nidn | NIDN8859540017 | |
dc.identifier.nidn | NIDN0017086108 | |
dc.identifier.kodeprodi | KODEPRODI55101#Teknik Informatika | |
dc.description.pages | 80 Halaman | en_US |
dc.description.type | Tesis Magister | en_US |