Show simple item record

dc.contributor.advisorNababan, Erna Budhiarti
dc.contributor.advisorZarlis, Muhammad
dc.contributor.authorSilviana, Lia
dc.date.accessioned2023-10-25T02:30:55Z
dc.date.available2023-10-25T02:30:55Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/88280
dc.description.abstractAccuracy in training sentiment analysis models for large number of review datasets is affected by the correct classification of sentiment labels. Improving the accuracy of sentiment labels, text representation also affects the performance of sentiment analysis models. Deep learning methods have been widely used to solve various sentiment analysis problems. To improve the performance of deep learning in sentiment analysis, it is necessary to use the right labeling method and good text representation to be used as an embedding layer. This study proposes sentiment labeling using Lexicon and deep learning Long Short-Term Memory (LSTM) and FastText as embedding words in sentiment classification. The InSet Lexicon Dictionary is used as a corpus in performing feature extraction. The sentiment data used is the reviews given by users on several applications provided on Google Play. The results showed that the LSTM network using Word embedded FastText with a dimension of 300 words received a small error value of 0.111 with an accuracy of 95.55% for data labeled based on Lexicon.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectfasttexten_US
dc.subjectlexicon baseden_US
dc.subjectlong short-term memoryen_US
dc.subjectsentiment analysisen_US
dc.subjectword embeddingen_US
dc.subjectSDGsen_US
dc.titleLexicon Based Data Labelling untuk Peningkatan Kinerja Long Short-Term Memory dalam Analisis Sentimenen_US
dc.typeThesisen_US
dc.identifier.nimNIM207038018
dc.identifier.nidnNIDN0026106209
dc.identifier.nidnNIDN207038018
dc.identifier.kodeprodiKODEPRODI55101#Teknik Informatika
dc.description.pages104 Halamanen_US
dc.description.typeTesis Magisteren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record