Show simple item record

dc.contributor.advisorEfendi, Syahril
dc.contributor.advisorLydia, Maya Silvi
dc.contributor.advisorMawengkang, Herman
dc.contributor.authorTanti, Lili
dc.date.accessioned2024-02-16T02:43:32Z
dc.date.available2024-02-16T02:43:32Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91298
dc.description.abstractDisaster logistics management is vital in planning and organizing humanitarian assistance distribution. The planning problem is facing challenges, such as coordinating the allocation and distribution of essential resources while considering the severity of the disaster, population density, and accessibility This study proposes an optimized disaster relief management model, including distribution center placement, demand point prediction, prohibited route mapping, and efficient relief goods distribution. A dynamic model predicts the location of distribution centers post-disaster using the K-Means method based on impacted demand points’ positions. Artificial Neural Networks (ANN) aid in predicting assistance requests around formed distribution centers. The Forbidden Route model maps permitted and prohibited routes, considering constraints to enhance relief supply distribution efficacy. The objective function aims to minimize both cost and time in post-disaster aid distribution. The Model Deep Location Routing Problem (DLRP) effectively handles mixed nonlinear multi-objective programming, choosing the best forbidden routes. The combination of these models provides a comprehensive framework for optimizing disaster relief management, resulting in more effective and responsive disaster handling. Numerical examples show the model’s effectiveness in solving complex humanitarian logistics problems with lower computation time, crucial for quick decision-making during disasters.en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectModelen_US
dc.subjectFacility Location Problems Dynamicen_US
dc.subjectArtificial neural networken_US
dc.subjectDeep Learningen_US
dc.subjectK-meansen_US
dc.subjectLocation Routing Problemen_US
dc.subjectMixed Integer Nonlinear Programmingen_US
dc.subjectSDGsen_US
dc.titleModel Masalah Lokasi Fasilitas Dinamis di Wilayah Pasca Bencana dalam Ketidakpastian Menggunakan Pendekatan Deep Learningen_US
dc.typeThesisen_US
dc.identifier.nimNIM198123011
dc.identifier.nidnNIDN0010116706
dc.identifier.nidnNIDN0027017403
dc.identifier.nidnNIDN8859540017
dc.identifier.kodeprodiKODEPRODI55001#Ilmu Komputer
dc.description.pages166 Halamanen_US
dc.description.typeDisertasi Doktoren_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record