Show simple item record

dc.contributor.advisorGinting, Armansyah
dc.contributor.authorPranata, Feby Dinar
dc.date.accessioned2024-02-16T07:27:37Z
dc.date.available2024-02-16T07:27:37Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91372
dc.description.abstractThe point of this research to develop a surface roughness RA (Roughness Average) prediction model in the turning process of AISI 304 steel by applying the Minimum Quantity Lubrication (MQL) technique and using a machine learning approach with the Gauss process regression algorithm. Turning process is an important method in manufacturing industry to produce components with high tolerance and desired surface roughness. The MQL technique is a more environmentally friendly and efficient alternative compared to conventional lubrication methods that use a lot of lubricants. This research involves collecting experimental data on turning process parameters and surface roughness of AISI 304 steel using MQL cited in the research journal of Dubey, et al (2022). This research shows that the prediction results using the gauss process regression algorithm have good accuracy and show competitive results with the algorithm used in the research of Dubey, et al (2022)en_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectTurning Processen_US
dc.subjectMQLen_US
dc.subjectSurface Roughness RA (Roughness Average)en_US
dc.subjectMachine Learningen_US
dc.subjectGaussian Processes Regression Algorithmen_US
dc.subjectSDGsen_US
dc.titlePrediksi Nilai Kekasaran Permukaan Pembubutan Baja Aisi 304 dengan Pendekatan Pembelajaran Mesin menggunakan Algoritma Regresi Proses Gaussen_US
dc.typeThesisen_US
dc.identifier.nimNIM180401169
dc.identifier.nidnNIDN0007086804
dc.identifier.kodeprodiKODEPRODI21101#Teknik Mesin
dc.description.pages80 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record