Show simple item record

dc.contributor.advisorGinting, Armansyah
dc.contributor.authorSuryadi, Suryadi
dc.date.accessioned2024-02-16T07:38:38Z
dc.date.available2024-02-16T07:38:38Z
dc.date.issued2023
dc.identifier.urihttps://repositori.usu.ac.id/handle/123456789/91380
dc.description.abstractFlank wear and surface roughness are considered important measurement parameters in turning operations. Unwanted issues like these can impact the quality and performance of the produced engine components. Machine learning algorithms are used to determine the extent of flank wear and surface roughness to address this. The Multiple Linear Regression methodology is used in this work to investigate and estimate the extent of flank wear and surface roughness in the hard turning operation of AISI 4140 steel utilizing coated ceramic inserts. This method entails gathering experimental data from prior studies (Das Ranjan et al. 2015), such as cutting speed, feed rate, and depth of cut. This data is used to train and evaluate the machine learning model in order to comprehend the complicated relationship between input and output variables. The results of this study show that the Multiple Linear Regression algorithm model can offer reasonably accurate surface roughness predictions but not flank wear predictionsen_US
dc.language.isoiden_US
dc.publisherUniversitas Sumatera Utaraen_US
dc.subjectFlank Wearen_US
dc.subjectSurface Roughnessen_US
dc.subjectMultiple Linear Regressionen_US
dc.subjectMachine Learningen_US
dc.subjectSDGsen_US
dc.titlePrediksi Nilai Aus Tepi dan Kekasaran Permukaan menggunakan Metode Pembelajaran Mesin pada Operasi Pembubutan Keras Baja Aisi 4140 menggunakan Pahat Keramik Berlapisen_US
dc.typeThesisen_US
dc.identifier.nimNIM180401162
dc.identifier.nidnNIDN0007086804
dc.identifier.kodeprodiKODEPRODI21101#Teknik Mesin
dc.description.pages81 Halamanen_US
dc.description.typeSkripsi Sarjanaen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record